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EXECUTIVE SUMMARY 

Freight and the efficient movement of freight is a critical component to the economy of the 
southern U.S. – particularly to states in Region 6 (AR, LA, NM, OK, and TX). Several of the 
largest freight distribution hubs (e.g., Houston, TX, New Orleans, LA, Oklahoma City, OK, and 
DallasFort Worth, TX) and most valuable truck corridors in the U.S. are located in this region. 
However, several challenges exist in supporting a strong freight economy: (1) efficiency of freight 
movement muffled by an infrastructure system in need of repair, limited capacity, and severe 
congestion and (2) mitigating negative community impacts. 

Connected and automated vehicle (CAV) technologies offer potentially transformative societal 
impacts including significant mobility, safety, and environmental benefits. One CAV application 
of particular interest to the freight industry is truck platooning. Truck platooning describes as 
number of trucks equipped with CAV technology that closely follow one another in a “platoon”. 
Benefits of truck platooning include energy savings from aerodynamic drag reduction, reduced 
highway congestion due to short following distances, and safety improvements from faster reaction 
times and automated support systems. However, the short following distances maintained between 
vehicles and more precise lane-keeping lead to a higher concentration of load being placed on the 
transportation infrastructure. It is unclear how these greater weight concentrations and new load 
configurations will impact the deterioration/damage to pavements. Addressing this uncertainty is 
critical, especially considering the current state of severe financial constraints in which not all 
state-owned infrastructures can be maintained. 

The main objectives of this study are: (1) through a series of modeling case studies located in 
Region 6, the operational, environmental (fuel savings, and emissions), and safety impacts of 
various truck platooning implementations, configurations, and assumptions were quantified at both 
the corridor- and network-level, (2) impacts to the structural pavement resulting from these truck 
platooning implementations were investigated and quantified using finite element modeling 
(FEM), and (3) a feasibility study for implementation was performed comparing the (potential) 
operational, environmental (fuel savings, and emissions), and safety benefits of truck platooning 
with the (potential) cost associated with increased pavement loads. This was also compared with 
an equivalent “base case” with human-driven trucks. 

The microsimulation corridor-level modeling was performed using python and Vissim software. 
The study area was selected from the I-10 freeway and the network was prepared in Vissim. All 
the designed scenarios were run with 5 different seeds to get the value of the performance 
indicators. An economic study was also performed to estimate the total cost of each scenario. The 
result showed that the truck platooning improves the operation, environment, and safety aspect of 
traffic in the off-peak hour. It has a deteriorating impact on traffic operation and safety in the peak-
hour if the truck platoon contains more than two trucks. 

In addition to the microscopic analysis, a large-scale analysis of the impacts of truck platooning 
on congestion and traffic flow dynamics is conducted. Accordingly, a simulation model of I-35 is 
developed. The model was calibrated based on the trajectory data collected from a segment of I-
35 near Austin, TX. The findings show that as the size of platoon decreases, the scatter in 
fundamental diagram decreases and the traffic flow becomes more stable. Moreover, with a fixed 
platoon size, higher penetration rate of autonomous trucks results in smoother traffic and less 
scatter in fundamental diagram. 
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Finally, the impact of truck platooning on pavement were also addressed using the elastic and 
dynamic-viscoelastic finite element method (FEM) models. The mechanical response obtained 
from the simulations are implemented to predict the effects of platooning due to limited wandering 
(lateral movement of truck tires). Based on the results, it can be concluded that wandering pattern 
can have influential effect on the fatigue life and permanent deformation damage. Economic 
analysis shows that the fixed-path platooning can significantly increase the construction-
maintenance cost of the pavement. 

Results of the case studies may inform CAV-related policy, planning, and integration strategies -
including changes to asset management and maintenance procedures. 

xii 



 

  

                  
               

             
                

                
                  

                  
                 

                

 
          

 
             

1. INTRODUCTION 

It is very critical to provide efficient and safe movement of freight for the economy of US states 
especially to the states in region 6 (Arkansas, Louisiana, New Mexico, Oklahoma, & Texas) where 
there are several largest freight distribution hubs (e.g., Houston, New Orleans, Oklahoma City, 
and Dallas-Fort Worth). Accordingly, most valuable truck corridors in the U.S. are in this region. 

According to a freight Flow Forecast Study that was published by FHWA in 2016, total domestic 
freight flow tonnage will grow by 6.0 billion tons over the forecast period from 2012 to 2045. This 
represents an increase of over 40 percent (as shown in Figure 1). Also, over the entire period of 
this forecast, the total real values of domestic freight flows will grow from $14.1 trillion in 2012 
to $22.5 trillion in 2045, representing about 60% percent increase (as shown in Figure 2) (1). 

Figure 1. Total Domestic Freight Flows, 2012 – 2045 (1). 

Figure 2. Total Real Values of Domestic Freight Flows, 2012 – 2045 (1). 
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In addition, Figures 3 and 4 show truck flows on the US national highway system in 2012 and their 
forecast for the year 2045. Clearly, there will be a significant increase of the truck flows on the US 
national Highway system over the coming 25 years (2). 

Figure 3. Truck flows on the US National Highway System in 2016 (2). 

Figure 4. Truck flows forecasting on the US National Highway System in 2045 (2). 
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Unfortunately, there are several challenges that affect the efficiency of freight movement 
including: high fuel and labor costs, vehicular emissions, and traffic safety problems resulting from 
trucks drivers’ errors (e.g., due to the need to drive for long distances and extended time). 

Fortunately, emerging vehicle technology such as Connected and Autonomous Vehicle (CAVs) 
can help in minimizing these challenges. One CAV application of particularly interest to the freight 
industry is truck platooning. Truck platooning consists a number of trucks equipped with CAV 
technology that closely follow one another in a “platoon”. Recent studies indicated that truck 
platooning may result in drastic changes in freight shipment operation and will have a great 
potential in addressing current challenges facing freight movement. 

It is expected that truck platooning can help in reducing fuel consumption, emissions, labor costs. 
Also, it may provide traffic safety and traffic flow improvements. On the other hand, truck 
platooning may accelerate the pavement damage due to its greater weight concentrations. 

Considering the literature review, very little studies concentrated on the safety aspect of truck 
platooning as well as impacts on Pavements. Indeed, there are several research issues that need to 
be considered, such as the effects of shorter headways on capacity or improved traffic flow 
stability, and its potential negative effects such as blocking at ramps. So, in our analysis, we will 
give a special focus on this safety aspect and impact on the pavement to fill this gap. 
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2. OBJECTIVES 

The objectives of our project can be summarized as follows: 

1. Examine the operational and environmental impacts of truck platooning on US highways. A 
series of modeling case studies located in Region 6 were developed using Vissim at both the 
corridor- and network-level. 

2. Explore the impact of truck platooning on pavement. finite element (FE) modeling was used 
to quantify the impact on pavement 

3. Conduct feasibility study and recommendations. An economic analysis was conducted 
comparing the (potential) operational and environmental benefits of truck platooning with the 
(potential) increases in maintenance costs associated with the limited tire wandering. 

Figure 5 illustrates the overall methodology used in this study to achieve the abovementioned 
objectives. Each of these tasks will be explained in detail in the following sections. 

Task 1: Stakeholder Engagement 

Task 2: Literature Review 

Task 3: Operational and Environmental Analysis 
(Corridor-level analysis) 

Task 4: Operational and Environmental Analysis 
(Network-level analysis) 

Task 5: Pavement Analysis 

Task 6: Feasibility Study and Recommendations 

Figure 5. Overall project methodology. 
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3. LITERATURE REVIEW 

3.1. Connected and Autonomous Vehicle 
Calvert et al. investigated the impact of automated vehicles on traffic flow and capacity, especially 
during the transition period, through literature review and experimental analysis (3). They found 
that low-level automated vehicles in mixed traffic had a small negative impact on traffic flow and 
road capacity. The main reason behind the reduction was higher gap times maintained by 
automated vehicles. The influence of decreased lane changes did not show significant effects. 
Experiments showed that a positive effect was observed only when the penetration rate was above 
70%. The author argued that current knowledge and model development still lacking about 
appropriately capturing much of real driving behavior, especially in a lateral sense. 

Rios-Torres & Malikopoulos investigated the impact of Connected and Automated Vehicles 
(CAVs) on traffic flow at merging sections and developed a microscopic simulation framework to 
explore the implications on fuel consumption and travel time (4). The simulation study was done 
using two scenarios (0% and 100% mpr) and three-traffic flow conditions (low, medium, and 
congested). The result of the baseline case (0% mpr) showed a linear trend in free traffic conditions 
but scattered for the congested condition. Optimal coordination of CAVs significantly reduced the 
variations in traffic flow and density for different traffic conditions. Therefore, full penetration of 
CAVs contributed to more stable traffic patterns even when the traffic density was high. Also, the 
overall fuel consumption reduced by 100% CAV scenario in all traffic conditions, though the 
highest was for medium traffic. Travel time reduction was very close to low traffic in both 
scenarios but varied greatly for medium and high traffic conditions. 

Martin-Gasulla et al. proposed a strategy for overcoming the potential deterioration of the 
performance measured when CAVs were introduced in the traffic stream at their early stages (5). 
The proposed strategy accounted for a dedicated lane for CAVs and preemption green time to sort 
CAVs for platooning. Empirical data were collected to calibrate the simulation model. The model 
showed that performance measures deteriorated with the introduction of CAVs and improvement 
was possible with platooning. Then the proposed strategy scenarios were implemented in the 
model. The maximum throughput achieved by CAVs seems promising for high penetration rates 
(44% more vehicles for 100% penetration rate). However, the coexistence with human-driven 
vehicles prevents them from achieving medium-to moderate improvements for low penetration 
rates, even reducing the capacity of the infrastructure. The proposed strategy effectively improved 
throughput and controls delay for most of the simulated scenarios, overcoming the potential loss 
in throughput for the first stages of CAV introduction into the traffic stream. 

Moridpour et al. examined the differences in traffic characteristics in the vicinity of heavy vehicles 
and passenger cars (6). The trajectory dataset used in this study was made available by Cambridge 
Systematics Incorporated for the Federal Highway Administration (FHWA) as part of Next 
Generation Simulation (NGSIM) project. The section of I-80 was 503m long and comprised of 
five main lanes with one auxiliary lane, one on-ramp, and one exit off-ramp. There were no lane 
restrictions for heavy vehicles. To better understand the influence of heavy vehicles on their 
surrounding traffic, they were classified into two separate classes based on their length. Heavy 
vehicles with a length of equal to or greater than 15m were classified as heavy trucks, and those 
with a length of less than 15m were considered as light trucks. The results showed larger front 
space gaps for heavy trucks compared with the front space gaps for light trucks and passenger cars. 
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The existence of larger front space gaps may be due to the limitations in the maneuverability of 
heavy trucks. Light trucks and passenger cars had an almost similar influence on their surrounding 
traffic characteristics, and therefore, the influence of heavy trucks on surrounding traffic was 
examined. The average travel times increased when the proportion of heavy trucks increased in 
each lane. The increase in the proportion of heavy vehicles increased the average travel times 
particularly in higher traffic densities and a larger proportion of heavy trucks. Furthermore, the 
number of passenger car lane-changing maneuvers per lane increased when more heavy trucks 
existed in that lane. The influence of heavy trucks on the number of passenger car lane-changing 
maneuvers was intensified in higher traffic densities and a larger percentage of heavy trucks. An 
increase in the proportion of heavy trucks intensified the likelihood of accidents and therefore 
reduced traffic safety. The existence of a larger percentage of heavy trucks could increase the 
likelihood of accidents and reduce traffic safety. To reduce travel time and improve traffic safety 
in highways/freeways, heavy trucks could be restricted from particular lanes especially during 
congestion. 

3.2. CACC development and impact: 
Schakel et al. investigated the effect of Cooperative Adaptive Cruise Control (CACC) on traffic 
flow stability through assessing the shockwave dynamics (7). A micro-simulation study was 
conducted with IDM+ car-following model and CACC with varying penetration rates. An 
Integrated full-Range Speed Assistant (IRSA) controller and Acceleration Advice Controller 
(AAC) algorithm were implemented for the CACC system. The result was compared with the 
A270 experiment. The AAC algorithm produced a downstream moving shockwave similar to the 
second shockwave observed in the A270 experiments but could not reproduce the first upstream 
wave. Other differences between simulated and field data might come from the variability of 
headways. The result showed improved traffic flow stability as shockwaves were quickly damped. 

Bergenhem et al. studied a vehicle-to-vehicle communication system that enables vehicles to drive 
in a platoon (8). A platoon according to SARTRE was a manually controlled lead vehicle with a 
number of automatically controlled (both longitudinally and laterally) following vehicles. A 
Vehicle-to-Vehicle (V2V) communication system prototype was proposed and described. The 
main communication channel was based on IEEE 802.11p which operates at 5.9 GHz. A software 
was developed to be used in the V2V system; whose function was to forward messages between 
vehicles. Measurements of the performance of the prototype V2V system were presented. The 
performance of the V2V system was affected by the Line of Sight. Two antenna placements on 
the leading vehicle (LV) were tested; in front of the driver cabin and the rear on top of the 
container. The rear placement displayed superior results, especially for distances above 70 meters. 
The result showed for the front antenna, the number of failed round trip messages was 1740 and 
the percent of the successful round-trip messages was 84.7%, and for the rear antenna, the number 
of failed round trip messages was 422 and the percent of the successful round trip messages was 
96.3%. The result showed the advantage of using the rear antenna over the front was 151% for a 
distance greater than 100 meters. 

Segata et al. investigated the inter-vehicle communication technologies needed for automated 
platooning (9). The author also discussed the resulting challenges for beaconing protocols. The 
platooning controller was adopted where the inputs to the system were the leaders and the front 
vehicle’s speed and acceleration. The idea was to divide the time after a beacon from the leader 
into slots and had each vehicle send its beacon in the time slot corresponding to its position in the 
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platoon. This slotted beaconing protocol was referred to as SLB and SLBP (with and without 
transmit power control respectively). The protocol versions of this static beaconing approach, with 
and without transmitting power control, were being referred to as STB and STBP, respectively. 
Calibration and validation were done using real experiments with four cars driving on a private 
road. A two-phase simulation was done, where in the first phase no communications were allowed, 
and thus overhead due to network simulation was removed, speeding up the initialization phase. 
In the second phase, communications were enabled when the platoons were formed properly. To 
assess the usability of the different protocols for platooning, a new metric the safe time ratio was 
defined which could then be computed for a set of possible delay requirements. In all the scenarios 
STB and SLB completely saturated the channel as they did not employed transmit power control 
and hence caused a huge amount of collisions. In comparison, STBP and SLBP were able to avoid 
complete channel saturation and drastically reduced the number of collisions in the channel, 
suggesting that transmit power control can give a huge benefit. The slotted approach resulted in a 
better utilization with increased channel busy ratio and lower collisions. 

Gao et al. studied the performance of Dedicated Short Range Communication (DSRC) Vehicle-
to-Vehicle (V2V) communication in truck platooning scenarios through real-world experiments 
(10). Two commercial semi-trailer trucks were used in the tests and DSRC devices were mounted 
on the trucks. GPS antenna was also mounted on the left side of the truck and was connected to 
the DSRC radio. A test software was developed to test the DSRC performance and was designed 
to collect different performance metrics while varying the design parameters. Two types of tests 
were used: Dynamic test and Static test. The main findings were: In the baseline scenario, DSRC 
achieved nearly 100% delivery ratio at all data rates with any message sizes and rates, even at a 
distance as long as 78 m; When a truck was turning, the outside antenna might be blocked by its 
trailer which affected delivery ratio, but the inside antenna normally worked very well; While on 
a straight line with complex terrain nearby, the delivery ratio could be low, especially with large 
message size and high data rates. The delivery ratio could even be lower than at curves; if the road 
was hilly, trucks could be misaligned (not parallel) with each other, resulting in a lower delivery 
ratio. However, in some situations, complex terrains may generate reflections that could improve 
the delivery ratio and reduce the adverse effects of hilly roads; using both side antennas alternately 
could normally improve delivery ratio significantly since the best performing antenna determined 
it at any moment. 

Xiao et al. (2020) investigated the traffic flow impacts of converting High Occupancy Vehicle 
(HOV) lanes into CACC lanes regarding CACC MPRs on a complex freeway corridor with 
multiple interacting bottlenecks (11). Simulation studies were conducted on the SR-99 corridor 
which was 20-km long with 16 on-ramps, 12 off-ramps, and 1 HOV lane. CACC vehicles were 
introduced and the left-most HOV lane was converted into a dedicated CACC lane. An enhanced 
car-following model, IDM+, and an extended lane-changing model, LMRS, was used. 

3.3. Vehicle Platooning 
Alam et al. showed the fuel reduction potential of heavy-duty vehicle platooning and the influence 
of a control system on fuel consumption (12). A simulation model was set up to quantify the fuel 
reduction of platooning vehicles and separate the effect of the control system (ACC) on fuel 
consumption. The result showed that the ACC system did not increase the fuel consumption and 
overall fuel reduction achieved through platooning. Also, different masses of trucks played a 
different role in fuel reduction, where following a lighter vehicle reduced more fuel consumption 
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than following a heavier vehicle. An experiment was conducted with two heavy-duty vehicles to 
verify the simulation result. The experimental result also showed significant fuel reduction 
achieved through vehicle platooning. 

Liang et al. investigated the problem of when it is beneficial for a heavy-duty vehicle to drive 
faster to catch up and join a platoon (13). The author had proposed a formula to calculate the fuel 
consumption, break-even ratio, and incentive factor, which indicated when a platoon catch-up 
attempt would be beneficial. An example was established with two heavy-duty vehicles (HDVs) 
of 40t each started driving at the same time at 80km/h with a position difference of 10km and they 
had the destination 340km and 350km apart respectively. The result showed an incentive factor 
of 0.17, which indicated that it was beneficial for the following vehicle to catch-up the lead vehicle 
and form a platoon rather than driving alone. The formula derived result was verified using a 
simulation model from Scania. The result showed a similar pattern with the simulation result. 
There were differences between the result from the formula and the simulation, but they were 
mainly due to the simpler assumptions taken for deriving the formula. 

Sugimachi et al. developed a method for autonomous platooning that uses information acquired 
from the front and rear trucks by inter-vehicle communication (14). A comparison between 
longitudinal control methods was done using a simulation study. F model was referred to as the 
controller that utilized the distance from only the front vehicle where the FR model was referred 
to the controller that utilized the distance from both front and rear vehicle. FR model outperformed 
and ensured better string stability than the F model. The effectiveness of the FR control method 
was experimentally evaluated. The proposed method showed a precise performance that was 
required for autonomous platooning. 

Liang et al. investigated the influence of traffic on merging maneuvers of heavy-duty vehicles 
trying to form a platoon (15). A simulation framework was used to simulate two heavy-duty 
vehicles merging maneuvers on a 50 km long straight two-lane road. Different speeds of the HDVs 
and different traffic densities were simulated and the distance it took for the vehicles to merge and 
form a platoon, as well as the average speeds both vehicles maintained, were measured. The result 
showed that for light traffic the merging point was delayed insignificantly. For medium traffic, the 
maximum increased merging distance was 46% compared to the ideal merging distance. For 
heavier traffic, the merging distances further increased, and the maximum increased value was 
66% compared to the ideal case. 

Lioris et al. presented a queueing model to predict the throughput change of an intersection due to 
vehicle platooning (16). A simulation confirmed the predicted result. A fluid dynamic model was 
developed and formalized to predict the capacity and throughput increase of an intersection with 
vehicle platooning. A mesoscopic simulation was done using PointQ software on a roadway 
network consisting of 16 intersections. With an infinite capacity queue, the network supported 
throughput increased by any factor, but with a finite capacity queue, the maximum throughput of 
the intersection decreased significantly. Cycle time may be reduced to reduce queue length and 
delay. However, in reality, cycle time reduction is not possible, but if platooning gives a gain in 
throughput, some of the gains may be used to reduce the cycle time, and hence reduce queue length 
and delay. 

3.4. Truck platooning: field testing 
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Browand et al. investigated the field test result of two tandem trucks to evaluate the fuel reduction 
potential of platooning (17). Two tests were performed with various inter platoon spacing; with 
two trucks equipped with automatic transmissions to maintain a fixed inter platoon distance. The 
results of the first test were not reliable, as rain canceled most of the data taken on that day. To 
minimize the effect of runway slope and wind, platoons were run on both north and south bounds, 
and the results were averaged. The results were compared with a base case, and it showed fuel 
reduction achieved for both lead and trail trucks. 

Tsugawa presented experiment and simulation results of automated truck platoon incorporated 
with configuration and sensing and control systems (18). Experiments were conducted with four 
trucks along an expressway equipped with DSRC for V2V communication. Both micro and macro 
simulations were performed to estimate aerodynamic drag reduction and CO₂ emission, 
respectively. The control and sensing system performed well in all results. The experiment result 
showed reduced fuel consumption. The microsimulation result showed aerodynamic drag 
reduction and the macrosimulation result showed CO2 reduction with a high penetration rate of 
platoons. 

Lu & Shladover investigated the result from field testing of a vehicle platooning system, 
considering the practical string stability for different maneuvering conditions (19). Three trucks 
were successfully platooned for different inter platoon gaps while equipped with Dedicated Short-
Range Communication (DSRC) equipment for vehicle-to vehicle (V2V) communications. The 
DSRC communication system had sufficient capabilities to support V2V communication 
applications. A maximum of 14 % fuel reduction was achieved in the third truck of the platoon. 
Energy-saving and reducing fuel consumption was the most important benefit of platooning. 

3.5. Truck platooning: Simulation 
Yeo et al. proposed a new behavioral algorithm with improved car-following and lane-changing 
dynamics for oversaturated freeway flow which showed very good results when comparing with 
the field data (20). The model was implemented on Aimsun. The model was validated with both 
vehicle trajectory data and macroscopic detector data. The result showed good agreement with real 
traffic data. 

Schakel et al. proposed a new lane-change model, which can be integrated with a car-following 
model for microsimulation (21). They included both relaxation and synchronization phenomena 
in designing the lane change model. The model was calibrated and validated for both free flow and 
congested traffic. It was very accurate when representing lane distribution and the onset of 
congestion. Also, the model was easier to calibrate as it has only seven parameters. 

Zhao et al. used an API interface of microscopic traffic simulator Vissim to construct the ACC and 
CACC simulation framework in mixed traffic (22). ACC and CACC equipped vehicles were 
considered and incorporated in the Vissim model. They simulated the model with platooning 
capabilities and found increased capacity with an increasing penetration rate of CACC platoons. 
The model was not calibrated, so the result was not reliable. However, it was the first step to 
incorporate different automated vehicles in the microsimulation study. The study only proposed 
the car-following model; however, the lane-changing model was missing. 

Lu et al. calibrated a microsimulation model with field data on Aimsun and Vissim. I-66 eastbound 
section was selected as a freeway section for the simulation study (23). Field data were collected 
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using different sensors and compatibility of data was checked using flow conservation theory. 
Calibration criteria for the microsimulation model were GEH, RRMSE, accumulated flow, and 
fundamental diagrams. Simulation results showed that the two models matched the field data at 
critical locations reasonably well. Even with the extensive collected data, the calibration process 
was very laborious and required many iterations. 

Lu et al. proposed an enhanced car-following lane-changing model which can incorporate 
connected automated vehicle for microsimulation study (24). The model was implemented on 
Aimsun. Loop detector data from a 13-mile long corridor was used to calibrate the model. The 
calibrated model accurately replicated the locations and throughputs of the freeway bottlenecks. 
Also, the simulated flows satisfied the calibration criteria of GEH distribution. 

Xiao et al. developed a realistic and collision-free car-following model for Adaptive cruise control 
(ACC)-Cooperative adaptive cruise control (CACC) vehicles and tested the model in a wide range 
of scenarios to explore model performance and collision possibilities (25). The model assumed 
that a human driver resumes vehicle control either according to his or her assessment or after a 
collision warning asks the driver to take over. The empirical ACC-CACC car-following models 
presented by Milanés and Shladover were used for the simulation study. However, these models 
could not achieve collision-free operation in the full speed range, but the proposed multi-regime 
car-following models for ACC and CACC systems extended the empirical ACC-CACC models 
with human intervention. An advanced version of the Intelligent Driver Model, IDM+, was used 
as the car-following model in the loop of human control. Five representative traffic scenarios were 
simulated: stop and go, hard brake, cut-in, cut-out, and approaching. The result of the simulation 
study showed that the proposed models were collision-free under typical traffic situations and most 
safety-critical scenarios. 

Ramezani et al. expanded their previous studies on car-following and lane-changing models to 
develop a microsimulation model for truck platooning and evaluate the traffic impact of heavy 
trucks on the I-701 corridor with diverging sections (26). They incorporated field data for time gap 
settings and calibrated the model to realistically simulate truck CACC operations. The results for 
the two scenarios were the base case with a 0% penetration rate and a 100% penetration rate of 
CAV. The results showed that traffic operations were improved due to truck platooning. One 
limitation of this study was that the authors only compared 100% mpr with the base case (0% mpr) 
and did not consider fuel consumption 

Kan et al. calibrated two driving behavior models, PATH and LMRS-IDM+ model, which were 
intended to reproduce the traffic dynamics of large scale and complex freeway corridors (27). A 
case study was conducted using real-world data at a complex 13-mile long section of the 
northbound SR99 freeway corridor. PATH and LMRS models were implemented on AIMSUN 
and MOTUS respectively. The driver behavior models accurately replicated the locations and 
throughput of the freeway bottlenecks. Both models outperformed the proprietary driver behavior 
model commercially available in AIMSUN. 

3.6. Truck platooning: Impact on Operation 
Jo et al. quantified the benefits of travel time savings with the application of truck platooning (28). 
The data used in the analysis include network and origin-destination data of 252 traffic in Korean 
freeway networks. The integration of micro and macro simulations was done to estimate the 
capacity and travel time to better capture the impact of truck platooning. Inputs of the simulations 
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were platoon size, inter platoon distance, intra-platoon distance, and penetration rate with 160 
scenarios. The simulation result showed a positive impact of truck platooning in reducing 
transportation costs. 

One limitation of this study is that the simulation model was not calibrated with field experiments. 
Simulation models should be calibrated and validated to enhance the reliability of the result. Only 
capacity and travel time savings were quantified, but fuel savings, environmental impact, and 
safety issues were not considered in the result. Also, while calculating the travel time saving, 
different costs for truck platooning like operating, automation, and infrastructure costs were not 
considered. 

Yang et al. simulated the impact of large-scale truck platooning on traffic safety and efficiency 
especially within critical traffic locations like merging and diverging areas (29). Traffic data of 
A15 corridors with merging, diverging and weaving areas were used in the analysis. Microscopic 
simulation using Vissim was used then to simulate truck platooning in the A15 corridor. 
Wiedemann 99 model was developed for the car-following behavior of drivers. The result showed, 
with the increase of platoon intensity, traffic efficiency and safety decreased in both merging and 
diverging areas. The platoon would increase the traffic flow only in a minimum intensity scenario. 
One limitation of this study was that the traffic data used were not compatible to validate all the 
Vissim model parameters, as according to Fan et al. (2012), lane changing, minimal gap 
acceptance, safety distance, standstill distance (CC0), headway time (CC1) and the threshold for 
entering ‘following’ (CC3) parameters should be validated. Only two types of vehicles cars and 
trucks were used in the analysis, which may bias the result. Another limitation was that human 
factors were not considered in this study which may affect the results. 

Calvert et al. examined the effect of truck platooning on traffic flow and traffic performance (30). 
LMRS-IDM+ model was employed to incorporate truck platooning. Traffic simulation was 
conducted on a 56.6 km motorway corridor from Dutch motorway A67. They used four variables 
including traffic state, truck gap settings (0.3, 0.5, 0.7 seconds), platoon size (2 and 3), and share 
of equipped trucks or penetration rate (20%, 50%, and 80%) to evaluate total traffic performance, 
the performance of traffic at ramps, and the ability of trucks to remain in a platoon. For this study 
area, truck platooning was found to have a small negative effect on traffic flow, which is negligible, 
but a higher negative effect for near congested or congested traffic flow. The authors suggested 
not allowing truck platooning in a saturated traffic state. It was suggested also that as no positive 
effect was found, the main concern for truck platooning should be emission and energy 
consumption. The main drawback of this study was that the result obtained was for the European 
context where vehicles were required to drive on the outside lane when not performing overtaking 
maneuverers, which is contrary to common practice in the US. 

Wang et al. investigated the benefits and risks associated with truck platooning on freeway 
operations, especially in diverging sections (31). A truck acceleration model was proposed and 
integrated with the car-following model IDM+ to simulate truck platooning. The enhanced 
microsimulation model LMRS-IDM+ was implemented in MOTUS. Input variables were platoon 
size, intra-platoon distance, traffic intensity, and penetration rate. The result showed that 
platooning caused significant merging problems in the diverging section (on-ramp). Proposed 
solutions for this problem were platoon yielding, platoon change lanes, and larger intra-platoon 
spacing for vehicle cut-ins. Truck platooning increased road capacity, but the increase was only 
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significant at high penetration rates. Vehicles unable to merge on time were deleted from the 
simulation, which limited the validity of the benefit of platooning. 

3.7. Traffic Safety 
Li et al. evaluated the impacts of the Cooperative Adaptive Cruise Control (CACC) system on 
reducing the rear-end collision risks on freeways (32). The car-following model was based on the 
Intelligent Driver Model, IDM. Two surrogated safety measures, Time Integrated TTC (TIT) and 
Time Expose TTC (TET), were used to quantify the collision risks. The safety effects of the CACC 
system were theoretically analyzed based on both TTC definition and linear stability. The 
simulation study was conducted to compare the result with the theoretical analysis. The theoretical 
and simulation results conformably indicated that the CACC system benefited dramatically from 
the reduction of rear-end collision risks. When the two key factors, the desired time headway, and 
the time delay were set properly (such as 0.6 s and 0.3 s, respectively), the TET and TIT could be 
reduced by more than 90%. The sensitivity analysis of TTC and the length of the CACC platoon 
also indicated there were no significant differences between these two factors. Furthermore, the 
safety effects of the CACC system weakened, with the decrease of the penetration rates on the 
market and the increase of time delay between platoons. Results also showed that the additional 
proportions of traffic flow per hour increased when the desired time headway declined to some 
extent. 

Zhao & Lee analyzed rear-end collision risk of cars and heavy vehicles on freeways using a 
modified crash potential index (CPI) which incorporates driver reaction time and vehicles 
maximum deceleration capacity (33). They proposed a CPI equation with modified DRAC (the 
deceleration to avoid crashes) to incorporate the driver’s reaction time, as the reaction time of cars 
and heavy vehicles vary. Vehicle trajectory data were collected from the US-101 freeway NGSIM 
project and loop detector data were collected from westbound Gardiner Expressway in Toronto, 
Canada. Vissim model was calibrated using observed vehicle trajectory data to replicate the traffic 
condition on the location of loop detector data. The model was validated by comparing traffic 
conditions with loop detector data with RMSPE and MPE criteria. The errors were very low. CPIs 
were calculated and compared for both observed and simulated data. Observed data showed mean 
CPI for the HV-Car pair was highest. Simulated data showed CPIs were consistently higher for 
the Car-Car pair and Car-HV pair than the HV-Car pair for the crash scenario. The non-crash 
scenario showed a similar result to the observed data. Finally, a binary logit model was developed 
to predict crashes based on the CPI value. The result showed that the CPI was statistically 
significant for all vehicle pairs and predicted the crash with higher accuracy (AUC = 1.0). 
Observed trajectory data in the location of loop detector data could not be used. Also, the driver’s 
visibility was not considered. Considering these may reduce the model’s performance but will 
reflect real-world behavior. Also, the car and heavy vehicles driving behavior differences should 
be incorporated in the simulation study. 

Tu et al. examined the longitudinal safety impacts of vehicle’s degradation from Cooperative 
Adaptive Cruise Control (CACC) to Adaptive Cruise Control (ACC) mode in a CACC fleet (34). 
To capture the realistic microscopic dynamics of ACC and CACC vehicles, models proposed by 
the California Partners for Advanced Transit and Highways (PATH) were implemented for 
simulation. To evaluate the safety impacts of degradation, the Time Integrated Time-to-collision 
(TIT) indicator was used in for safety evaluation. Extensive simulations experiments were 
conducted in MATLAB R2018a. Four experiments such as different driving states (i.e., cruise, 
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deceleration, and acceleration), one vehicle degradation, two adjacent vehicle degradation, and 
two non-adjacent vehicle degradation at different positions of a 10 CACC vehicle fleet were 
simulated. For the driving state, the result showed the deceleration state brought collision risk to 
the degraded vehicle with a TIT value of 7.8. Impacts of one degraded vehicle at different positions 
showed the maximum value of TIT appears in the second position. The TIT value drops as the 
degradation position moved to the middle of the fleet and reaches a minimum value at the fifth 
position. Then the risk increased gradually to the end of the fleet. When two adjacent vehicles 
degraded at the same time, the result showed a similar trend to that in one vehicle degradation 
scenario. The middle positions were still safer. When two non-adjacent vehicles degraded at the 
same time, the safety (TIT value) further decreased than the adjacent scenario. The main focus was 
to evaluate safety in the longitudinal direction, and the lateral direction was not considered in the 
simulation. 

3.8. Gaps in Previous Studies 
Autonomous vehicles are defined as “those in which operation of the vehicle occurs without direct 
driver input to control the steering, acceleration, and braking and are designed so that the driver is 
not expected to constantly monitor the roadway while operating in self-driving mode.” (NHTSA) 
Connected vehicles are equipped with communication technologies to exchange information with 
other users on the road. Connected and autonomous vehicles are a new and transformative 
technology, and they are rapidly evolving and developing capabilities (35). Cavs are still in the 
transition period. In this period, CAVs will have a negative effect on traffic flow. According to 
Calvert et al., a positive effect of CAVs on traffic flow and capacity was observed only when the 
penetration rate was above 70% (3). With the increase of the market penetration rate, the positive 
effect will increase. Rios-Torres & Malikopoulos showed that with a full market penetration of 
CAVs, the traffic patterns would be more stable even with high traffic density (4). 

One of the most important applications of CAVs is their platooning capabilities. Platooning means 
several vehicles following a leader vehicle with reduced headway to reduce fuel consumption and 
increase the traffic flow (12). Introducing platooning at the transition period of CAVs will 
negatively affect traffic flow, but with the increase of market penetration rate the positive effect 
will increase. Truck platooning will be the future of transport with certain benefits like reduction 
of fuel consumption, emission reduction, and increase the economy of scale (36). Browand et al. 
investigated the field test result of two tandem trucks, found fuel reduction capacity of platoons 
for both leads, and trail trucks (17). Lu & Shladover investigated the result from field-testing of a 
vehicle platooning system and the test achieved a 14% fuel reduction for the third truck of the 
platoon (19). 

The impact of truck platooning on traffic flow, capacity, and safety are still unclear. Wang et al. 
investigated the impact of truck platooning in a diverging section with a simulation experiment 
(31). The result showed that truck platooning increased road capacity, but the increase was only 
significant at high penetration rates. Jo et al. quantified the benefits of travel time savings with the 
application of truck platooning and found a positive impact on reducing transportation costs (28). 
In the study of Calvert et al., no positive effect was found of truck platooning on traffic flow (30). 
Authors suggested that the main concern for truck platooning should be emission and energy 
consumption. Yang et al. showed a simulation result of large-scale truck platooning within a 
critical traffic location (29). The simulation result showed a negative effect of increased platoon 
intensity on traffic safety and efficiency. Li et al. evaluated the impacts of a Cooperative Adaptive 
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Cruise Control (CACC) system with simulation experiments and found that it dramatically reduced 
the rear-end collision risks (32). Tu et al. simulated and examined the longitudinal safety impacts 
of vehicle’s degradation from Cooperative Adaptive Cruise Control (CACC) to Adaptive Cruise 
Control (ACC) mode in a platoon (34). As the platoon vehicles will be CACC equipped, 
degradation from CACC to ACC for any following vehicle will reduce the safety substantially. 
Very few papers dealt with the safety aspect of truck platooning. 
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4. METHODOLOGY 

4.1. Operational and Environmental Analysis at Corridor-Level 

4.1.1. Stakeholder Engagement 
We have done many communications with many stakeholders in the US to get the required data 
for this project. 

1- We have contacted National Performance Management Research Data Set (NPMRDS) in Jan. 
2020. In Feb. 2020, they have provided us with the link to download GIS shapefiles of TMC 
segments, which includes AADT data. We signed up for an account and got access to their 
massive data downloader tool. This tool includes daily data from 2011 to 2020 for 24-hour 
period with 10, 15- and 60-minute interval. For every record, it includes speed, historical 
average speed, reference speed, travel time, and data density values. We can select the data 
using TMC code and download it in CSV format. 

2- We have contacted Capital Region Planning Commission (CRPC) in Feb 2020. In late March 
2020, they provided us with the data through email. The dataset includes GIS shapefiles of 
TMC segments for Baton Rouge with AADT data. 

We contacted Texas Transportation Institute and Texas Department of Transportation to obtain 
Traffic data (volume, speed, classifications etc.) and Pavement structure data (layers thicknesses, 
materials properties, etc.) to assist with finite element simulations. 

4.1.2. Data 
The data set used in this task of the analysis was obtained from the National Performance 
Management Research Data Set (NPMRDS). This data set contains GIS shapefiles of TMC 
segments which includes AADT data. 

This dataset provides massive daily data from 2011 to 2020 for a 24-hour period with 10, 15, and 
60-minute intervals. For every record, it includes speed, historical average speed, reference speed, 
travel time, and data density values. 

The output provides two files, one containing Speed and travel time data and the other containing 
TMC segment data. 

 Speed/Travel time file includes Speed, Historical Average Speed, Reference Speed, Travel 
Time, and Data Density Values for every time period. 

 TMC segment data includes useful information like the number of through lanes and 
AADT. 

Traffic count data for 2017-2018 were collected for the Baton Rouge area from the Capital Region 
Planning Commission (CRPC). This count data was used to estimate the vehicle input of our model 
and validate the model. 

4.1.3. Study area 
We have selected a freeway segment with diverging and merging sections on I-10 road in Baton 
Rouge, Louisiana, which is a heavily utilized truck corridor situated in Region 6. We have 
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collected GIS shapefiles of the segment that was used to create the roadway network in Vissim. It 
is approx. 6.95 km (4.3 miles) corridor with 8 merging and 8 diverging sections (as shown in 
Figure 6). 

Figure 6. Study area (a freeway section in I-10 road). 

4.1.4. Scenario Design 
The effects of truck platooning were investigated considering the following variables: 

1. Platoon size (2, 3, 4, and 5) 

2. Inter-platoon distance (50m, and 100m) 

3. Intra-platoon distance (0.3s, 0.5s, and 0.7s) 

4. Market Penetration rate (25%, 50%, and 100%) 

5. Time period (Peak and Off-peak hour) 

To model truck platooning in Vissim, we integrated python with Vissim to code the CAV 
platooning part. 

Considering these factors, the results of the experimental design showed that a total of 144 
scenarios need to be examined. However, using a fractional factorial design method, the number 
of simulation scenarios can be reduced to only 36 scenarios as shown in Table 1. 
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Table 1. Scenario design result. 

Time period MPR Platoon size Inter platoon 
distance 

Intra platoon 
distance 

Reference peak hour 0 - - -
Peak hour 25 2 100 0.3 
Peak hour 25 3 100 0.3 
Peak hour 25 2 100 0.5 
Peak hour 25 3 100 0.5 
Peak hour 25 2 100 0.7 
Peak hour 25 3 100 0.7 
Peak hour 50 2 100 0.3 
Peak hour 50 3 100 0.3 
Peak hour 50 2 100 0.5 
Peak hour 50 3 100 0.5 
Peak hour 50 2 100 0.7 
Peak hour 50 3 100 0.7 

Peak hour* 100 2 100 0.3 
Peak hour* 100 3 100 0.3 

Off-peak hour 25 3 50 0.3 
Off-peak hour 25 4 50 0.3 
Off-peak hour 25 5 50 0.3 
Off-peak hour 25 3 50 0.5 
Off-peak hour 25 4 50 0.5 
Off-peak hour 25 5 50 0.5 
Off-peak hour 25 3 50 0.7 
Off-peak hour 25 4 50 0.7 
Off-peak hour 25 5 50 0.7 
Off-peak hour 50 3 50 0.3 
Off-peak hour 50 4 50 0.3 
Off-peak hour 50 5 50 0.3 
Off-peak hour 50 3 50 0.5 
Off-peak hour 50 4 50 0.5 
Off-peak hour 50 5 50 0.5 
Off-peak hour 50 3 50 0.7 
Off-peak hour 50 4 50 0.7 
Off-peak hour 50 5 50 0.7 

Off-peak hour* 100 4 50 0.3 
Off-peak hour* 100 5 50 0.3 

4.1.5. Performance Indicators 
To align the microscopic analysis with the project objective, the following surrogate measures 
were considered: 

 Surrogate measures for operational impacts: Total Network delay (TND), Time to merge 
(TTM) and diverge (TTD) 

 Surrogate measures for environmental impacts: Fuel consumption, Total emission of CO₂, 
NOₓ, and PM₁₀ 
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 Surrogate measures for safety impacts: Time Integrated Time to Collision (TIT) 

Total network delay (TND): 

Total network delay is defined as the total time delay of vehicles compared to free-flow conditions. 
It indicates the severity of congestion. 

Tnd = ∑ (𝑡𝑡  − 𝑡𝑡 ) [1] 

where: 

𝑡𝑡  = total travel time of vehicle k; and 

𝑡𝑡  = free-flow travel time. 

Time to merge/diverge (TTM, TTD): 

Time to merge/diverge indicates the average time that all merging/ diverging vehicles require to 
merge/diverge from the point they enter the merging/diverging section to the point they leave the 
merging/diverging section. 

Ttmd = ∑ (𝑡  − 𝑡 ) [2] 

where: 

𝑡 = time vehicle k passes location B; and  

𝑡  = time vehicle k passes location A. 

For the merging section, location A will be on the merging section, and location B will be on the 
main freeway. 

Fuel Consumption and Emission: 

The Vissim software provides an emission model to calculate the emissions of some or all vehicles 
in a simulation run. The Emission Model DLL Interface of Vissim is written in C/C++ which 
contains specific functions. During a simulation run, Vissim calls the DLL code for each affected 
vehicle in each simulation time step to calculate the emissions of the vehicle. Vissim passes the 
current state of the vehicle (speed, acceleration, gradient) to the DLL and the DLL computes the 
emissions in the current time step and passes these values back to Vissim to be shown in 
evaluations. 

In this study, the fuel consumption of all vehicles was aggregated over the whole simulation run. 
Emission value was also aggregated for CO₂, NOₓ, and PM₁₀ pollutants only. The unit for fuel 
consumption is gallons and for emission is grams. 

Time Integrated Time to Collision (TIT): 

According to Hyden, Time to Collision (TTC) value is the time that remains until a collision 
between two vehicles would have occurred if the collision course and speed difference remain 
unchanged (37). 
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The TIT expresses the entity of the TTC lower than a safety threshold. 

( ) ( )
, 𝑖𝑓 𝑣 (𝑘) > 𝑣 (𝑘)

𝑇𝑇𝐶𝑖(𝑘) =  ( )  ( ) 

∞, 𝑖𝑓 𝑣 (𝑘) ≤ 𝑣 (𝑘) 

𝑇𝐼𝑇(𝑘) = ∑   
 

− 
 

 . ∆𝑘, ∀ 0 < 𝑇𝑇𝐶𝑖(𝑘) ≤ 𝑇𝑇𝐶 ∗ 
( ) ∗ 

𝑇𝐼𝑇 = ∑  
 𝑇𝐼𝑇(𝑘) [3] 

where: 

TTCi(k) = time to collision for the i vehicle at k time step 

xi(k) = Location of the i vehicle at k time step 

vi(k) = Velocity of the i vehicle at k time step 

TTC* = threshold Time to collision 

TIT(k) = Tiem integrated time to collision at k time step 

4.2. Operational and Environmental Analysis at Large-Scale 
This section discusses the development of the requirements for the large-scale analysis of the 
impacts of truck platooning on congestion, emissions, and traffic flow dynamics. 

4.2.1. Data 
Vehicle trajectory data have been a great source to understand driver behavior. Unfortunately, due 
to the difficulties associated with collecting vehicle trajectory data at a corridor level, there exist 
very limited vehicle trajectory datasets (e.g., NGSIM I-80, NGSIM I-290, and HighD). None of 
these datasets, however, contains any automated vehicles (at any levels of automation, from Level 
1 to Level 5). According, in order to better capture the impacts of platooning on congestion, 
emissions, and traffic flow dynamics, the proposal team collected their own corridor-level vehicle 
trajectory data. The dataset also contains some instances of three Level 1 automated vehicles 
(operating under full-range Adaptive Cruise Control) in a platoon formation. The details of the 
data collection approach and the extracted data is provided below. 

Data Collection Methodology: Vehicles' trajectory can be extracted from the video frames 
recorded in the bird's-eye view from a segment of the roadway (figure 7.a). In every video frame, 
the vehicles' location can be estimated for a fixed coordinate system and reference point on the 
ground. Every video recording is converted to a sequence of images (i.e., frames) separated at a 
constant rate over time (e.g., 25 frames per second). Tracking the vehicle's location over the 
sequence of images enables extracting the vehicle's trajectory over time. The vehicle trajectory 
extraction can be performed in four steps: image stabilization, vehicle detection, vehicle tracking, 
and trajectory construction. In the image stabilization step, all the images are transformed to match 
a reference field of view. Then the vehicles are detected in every image and tracked over the 
sequence of images. Finally, the vehicle's location and trajectories are constructed by converting 
the image coordinates to the adopted reference coordinates on the ground. These steps are further 
elaborated in the following sections. 
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Image Stabilization: The location of every vehicle in an image is estimated by converting its 
position on the image map to the fixed coordinate system picked on the ground. Consequently, it 
is essential to find the mapping function between the image coordinate to the adopted ground 
coordinate. Image stabilization is the process of converting the field of view of all the images (i.e., 
frames) to a reference image for which the mapping function to the ground coordinate is known. 
The image stabilization is performed in three steps; first detecting the key features in both reference 
and input images, second, finding the matching features between the two images, and third, 
estimating transformation between them. There exist different algorithms for good key features 
detection in images such as Harris corner detector (38), Scale-Invariant Feature Transform (SIFT) 
(39), Speeded up Robust Feature (SURF) (40), and Oriented FAST and Rotated BRIEF (ORB) 
(41). Among these algorithms, SIFT and SURF are the top-performing feature detectors in terms 
of scale and transformation. The second step is matching the features between the reference image 
and input image. One naive approach is to compare every feature in the reference image with every 
feature in the input image to find the best matching pairs; however, this would be very time-
consuming and impractical for a video data collection at a high frame rate. Instead, to improve the 
computation speed, the Fast Library for Approximate Nearest Neighbors (FLANN) matcher can 
be utilized to match features between the images (42). The final step is finding the perspective 
transformation, specifically the homography, between the reference and input images considering 
the best matching features. There are chances that some of the feature matches are incorrect. The 
Random Sample Consensus (RANSAC) algorithm is a technique to find the model parameters 
from a dataset with many outliers through an iterative process (43). RANSAC can be used to 
estimate the homography transformation between two images considering the matched key 
features. 

Object Detection: Object detection techniques in computer vision can be used to identify and 
locate the vehicles in the aerial images. The classical approach for object detection is to identify 
the informative regions in the image that contain objects of interest, then extract semantic and 
representative features from them, and classify the objects in those regions. Deep neural networks 
(DNN) made a significant performance breakthrough in object detection due to the capacity of the 
convolutional neural networks (CNN) to learn more complex features than shallower models. 
There is multiple popular CNN based object detectors such as R-CNN (44) and RetinaNet (45). 
The weights and parameters of a pre-trained CNN based object detector can be fine-tuned by 
training on a dataset of aerial images with known vehicle annotations. The trained model can be 
used in the vehicle detection process to identify and locate vehicles on the aerial images. The input 

Figure 7. Vehicle detection and tracking in aerial images. 
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to the vehicle detection is a stabilized image, and the output is the coordinates of the bounding 
boxes enclosing the vehicles in the image. Figure 7.b presents the detected vehicles and their 
visualized bounding boxes. 

Object Tracking: Tracking is the process of linking the new detections to previous observations. 
The tracking methodology proposed for this study includes data association and track maintenance. 
Data association is associating the detected vehicles in the current image frame to the vehicles 
identified in the previous ones (Figure 7.c). The track maintenance is in charge of initiating new 
tracks, maintaining the tracks, and deleting them. The track maintenance initiates tracks with 
unique ids to all the vehicles detected in the first image frame. After that, for every image, all the 
newly detected vehicles are compared with the existing tracks using the data association. The 
tracks are updated as new detection is associated with them. A new track is constructed for any 
new observation that is not associated with the current tracks. Moreover, if a track is not updated 
in the previous n frames, the track maintenance deletes that track. A track object maintained by 
the track maintenance contains both the unique id of the track and the coordinates of the bounding 
box of its last observation. 

Trajectory Construction: All the aerial images are transformed and stabilized, considering a 
reference image before extracting the vehicle trajectories. The trained vehicle detector model 
locates the vehicles on the stabilized images, and the resulting bounding boxes are used in the 
tracking of the vehicles from one frame to another. The bounding boxes represent the vehicle's 
location in image coordinates (i.e., row and column of pixels). These coordinates need to be 
converted to a fixed ground coordinate system (e.g., meters or feet) for trajectory extraction. Every 
pixel is located by its row and column number in the image map. The pixel coordinate can be 
transformed into a cartesian coordinate system by taking axes parallel to the columns and rows of 
the image map and knowing the pixel size on the ground. The pixel size on the ground depends on 
the flight elevation and is the key to the mapping function between the two coordinate systems. 
The front bumper can be taken as the vehicle's location on the roadway, and the trajectory of the 
vehicle is the list of its location over space and time. Besides, a Kalman filter can be applied to 
reduce the noise in the vehicle's location estimates due to noisy bounding boxes from image 
stabilization and vehicle detection processes. 

4.2.2. Data Collection in Austin, TX: 
One of the primary motivations of this data collection was to observe how recent advancements in 
vehicle technology and ADAS impacts traffic flow dynamics and to utilize that knowledge in the 
simulation. However, it is not straightforward to distinguish vehicles using ADAS from the birds-
eye view. The accessible solution to the problem was to use probe vehicles during the data 
collection. Accordingly, this study evaluated the impacts of the most common yet demonstrating 
ADAS feature, Adaptive Cruise Control (ACC). ACC is also a core feature amongst all platooning 
applications. The trajectory data was collected in Austin, TX (see Figure 8). 

For the data collection in Austin, a platoon of three probe vehicles, including two Toyota Prius 
and one Toyota Avalon, were used under ACC for data collection. The platoon leader was 
following an arbitrary vehicle on the roadway in front of it using ACC. The other two vehicles 
were also following their leaders with ACC. A total of five runs were performed along the study 
roadway segment. Note that all vehicles had full-range ACC. The data was collected on the 
southbound of Interstate Highway 35 between Exit 237B and Exit 238A in Austin, TX. A single 
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Figure 8. Time-space diagram of the vehicles for ten minutes on the Southbound of I-35 between Exit 237B and 238A, 
Austin, TX, during the morning peak time. 

stretch of 500 feet roadway was recorded for 2 hours between 07:30 AM and 09:30 AM on a 
Friday. 

The key contribution of this data collection was to introduce the first collected comprehensive 
trajectory dataset from both ACC and human-driven vehicles. One of the main features of this 
dataset is the continuity in data recording for over two hours during the morning traffic peak hours. 
The continuity in data collection ensures that no information or interaction between the vehicles 
is lost. Figure 9 presents the examples of the time-space diagram of the trajectories extracted using 
aerial videography on a roadway segment of approximately 500 feet over 10 minutes. According 
to this figure, some of the trajectories are not continuous, which is due to the lane-changing in 
most cases. However, there are few cases that the vehicle detector has failed to detect a vehicle in 
the image, causing a discontinuity in its trajectory. In this study, two actions were applied to 
address these types of errors. First, the false-negative error in detection was mitigated in the 
tracking process by the combination high frame rate (i.e., 25 fps and 30 fps) and maintaining track 
of the vehicle for five consecutive frames after the last time it was seen. Second, the false-positive 
error was reduced by eliminating the trajectories with less than three data points. The quality of 
data is then further improved by manually addressing the false-negative and false-positive 
detections. More details on this data collection effort and findings of the study can be found in 
(46). 

4.3. Pavement Structural Analysis 

4.3.1. Introduction 
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Over the past few years, autonomous truck platooning technology (a set of connected heavy-duty 
trucks travelling closely at specific headway intervals) has been tested and would be utilized in 
near future. Connected autonomous vehicles (CAV) can be implemented as a contribution to 
sustainable freight and potentially offers road safety improvements, elevated economic aspects, 
and environmental preservation. 

However, autonomous trucks platooning can negatively affect AC pavements service life due to 
limited tire wandering as the trailing trucks closely follow the leading truck’s pathway. Failure to 
take account of wandering can impose significant maintenance costs on national and state road 
network. This study aims at evaluating the detrimental effects of wandering. From a structural 
point of view, a limited wandering pattern leads to concentration of induced maximum stress (or 
strain) over a narrower area beneath the tires. Hence, these areas become highly prone to fatigue 
and permanent deformation. 

Although numerous studies have been conducted to evaluated various aspects of AVs, the effects 
of platooning on pavement condition have not been studied thoroughly. In this task the following 
tasks are conducted to take into account the effective features of AV platoons: 

- Traffic data will be analyzed to provide an estimation for the truck share, axle load 
magnitude, and spectrum. 

- Material characterization will be used to develop the master curves and Prony series 
parameters to account for viscoelastic behavior of asphalt materials. 

- Finite Element Method (FEM) Models will be implemented to assess the effect of truck 
platooning effect on pavement. 

- MEPDG method is implemented to evaluate the impact of fixed-path wandering on fatigue 
and permanent deformation damage. 

4.3.2. Background on Traffic Loading Impact on Pavement 
Generally, numerous factors can affect the mechanical response of asphalt concrete (AC) 
pavements. In this section, the most significant factors are reviewed based on previous research. 

Vehicle Speed and Dynamic Loading Impacts: A NCHRP report developed by Gillespie et al. 
(1993) demonstrated that structural response of AC pavements is influenced by the speed of the 
passing load (i.e., loading time) and also the consequential dynamic loading impacts. The authors 
believed that for higher speeds, the effects of reduced loading time can be counterbalanced by the 
increased dynamic load impact (47). 

In a study conducted by Sarkar, a FEM model was used to numerically assess the impact of speed 
and AC characteristics on critical pavement responses (48). The assessment was based on different 
loading axles types including single, tandem and tridem axles. It was concluded that decrease in 
moving speed does not necessarily increase the measured critical strains and in some cases, higher 
speed induces higher structural responses. 
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Figure 9. Maximum longitudinal and transverse strain for different vehicle speeds. 

Overloading: Overloading is one of the crucial topics considered in pavement design and many 
researchers have aimed at evaluating the overloading damage on transportation infrastructures. In 
a study by Pais et al., the effect of overloaded was determined using the truck factors for both 
different pavement layer thicknesses and subgrade stiffness moduli (49). Based on the results, the 
overloading can double the pavement cost. Another research demonstrated that the increased 
number of overloaded trucks up to 20% can lead to a 50% reduction in the fatigue life of asphalt 
pavement (50). Gungor et al. measured the impacts of overweight (OW) trucks on road 
infrastructures (including pavement) to determine realistic permit fee system based on prediction 
algorithms (51). 

Zaghloul et al. implemented a three-dimensional, dynamic finite element program (3D-DFEM) to 
analyze pavement through “static, linear elastic analysis and dynamic, nonlinear analysis”. 3D-
DFEM predictions were compared with the results of a multi-layer analysis. Also, the measured 
pavement deflections were compared with the 3D-DFEM predictions for dynamic verifications 
(52). 

Wheel-path Wandering: Load-induced distresses such as fatigue and rutting have significant 
effect on pavement condition and are considered as fundamental parameters in pavement thickness 
design. Since the stress and strain magnitudes in a certain depth are inversely related to horizontal 
distance to loading point, wheel path wandering affects the induced damage. Many studies have 
been conducted to assess the effects of tire wandering. Noorvand et al. implemented 
“AASHTOWare Pavement ME Design” to assess the effect of truck wheel-path on the long-term 
performance of pavement structures for exclusive and partial use by autonomous trucks. The 
evaluations were conducted based on rutting and fatigue cracking MEPDG analysis (53). 

In a work done by Tamura et al., a path tracking controller for a semitrailer-like vehicle was 
implemented by the means of time scale transformation and linearization. The vehicle’s controller 
was designed to follow arbitrary paths consisting of arcs and lines (54). 

Erlingsson et al. evaluated the impact of lateral wandering standard deviation characteristics on 
rut development. The rutting calculations were based on two methods including mechanistic 
empirical (M-E) evaluation of the permanent strain in all layer of the structure and time hardening 
approach in bonded layers (55). 
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FEM Analysis of AC Pavements: Researchers have conducted many studies to develop micro-
mechanical FEM models. Al-Rub et al. implemented FE material constitutive behaviors including 
viscoelastic–viscoplastic, elasto-viscoplastic, coupled viscoelastic, viscoplastic, viscodamage. The 
results demonstrated that 2D plain strain models provide an overestimated rut values compared to 
3D models (Mshali & Steyn, 2020). Darabi et al. implemented numerical algorithms to simulate 
the fatigue and healing behavior of asphalt concrete by the means of “Abaqus via the user material 
subroutine UMAT” (56). In a research conducted by Ban et al, a 3D FEM simulation was 
developed based on Schapery's nonlinear viscoelastic constitutive model. A UMAT FE software 
was implemented to evaluate the asphalt pavement undergoing heavy truck loads (57,58). 

Ambassa et al. developed a viscoelastic finite element method (FEM) model to determine asphalt 
concrete pavement damage due to multiple-axle moving traffic loads. The model was evaluated 
for different scenarios including different pavement structures, passing load velocities, load 
configurations, and AC layer temperature (59). 

Al-Qadi et al. conducted a comparison between the measured responses and the finite element 
using linear elastic theory. Results demonstrated that “the elastic theory overestimates pavement 
responses at low temperatures but significantly underestimates these responses at high 
temperatures”. An improved prediction was also suggested by the means of the bonding conditions 
at the interfaces and also implementing a viscoelastic method (60). 

Assogba et al. evaluated the effects of vehicular speed and overloading on the induced dynamic 
loads and developed a three-dimensional finite element model to calculate the stress and strain 
below the asphalt concrete (61). The model was further validated by comparing these strain and 
stress values with field measured dynamic strains (using the embedded Fiber Bragg Grating 
sensors). As shown in Figure 10, the FEM analysis was conducted using implicit method and 
DLOAD user subroutine; this model was analyzed using eight-node brick element with reduced 
integration and the pavement dimensions were considered to be 80×20×20 meters (length × width 
× depth). Due to difficulty of simulating the real stress contact in study’s programming subroutine, 
only the vertical tire-pavement contact stress was considered in the analysis. 

Based on the results, the authors concluded that lower vehicular speed induces great increase in 
the loading duration and also increases the shock effect of tire load. The overloading effect highly 
depends on the overload extent. Moreover, their fatigue analysis demonstrated that the concurrent 
effects of overloading and decreased vehicular speed can significantly reduce the service life of 
the pavement. 
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Figure 10. The simulated FEM model and meshing (61). 

Mshali and Steyn measured the field elastic deflection using a multi-depth deflectometer (MDD) 
at different speeds and on different pavement sections while considering preset wandering 
scenarios (56). A traffic speed deflectometer (TSD) with tire inflation pressure of 700 kPa was 
implemented to apply the dynamic loading simulation. Testing temperature and ambient condition 
were not controlled during their field testing; however, tests were performed at a fixed day-time 
and for the same duration. The TSD speed were considered to be 2, 5, 10, 20, 30, 40, 60, 80 and100 
km/h and the wandering offsets were considered 192.5 and 500 mm from the center of the dual 
tire axle (Figure 11). 

As shown in Figure 12, the results demonstrated that the type and structure of pavement had 
significant effect on the proposed calculated speed adjustment factors (SAF) and these factors 
cannot be generalized merely as a function of speed and load amplitude. 

Figure 11. Deflection measurements by the MDD embedded in various depth of the pavement (56). 
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Figure 12. Effect of speed on deflection of different pavement (56). 

The difference between the static and dynamic loading can be characterized by the oscillating 
motion of the combined suspension-tire system, which makes the dynamic load to deviate from 
the mean amplitude (57,58). 

Time-temperature Superposition (TTSP): Based on time-temperature superposition (TTSP) 
phenomena for a viscoelastic material, a viscoelastic parameter at two different temperatures can 
be equal if the test frequency is altered using TTSP equations. 

The shift factor 𝑎  is used to determine frequency or loading time shift and it is defined as: 

𝑎  = [4] 
 

where: 

𝜔  = frequency on master curve for a defined reference temperature; and 

𝜔 = frequency with equal property value at temperature T 

Sigmoidal function is one of most conventional techniques that can be used to develop master 
curves. This function is also used by the MEPDG pavement design (Figure 13) (59,62). The 
sigmoidal function can be defined as following (63): 

𝐸(𝑡) = 𝛿 + [5] ( ) 

where: 

𝐸(𝑡)= Cyclic modulus; 

𝛿 = Minimum modulus value; 

𝛼 = Span of modulus value; 

𝛽 , 𝛾 = Shape parameters; and 

𝑇  = Referenced temperature. 
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Figure 13. Sigmoidal function parameters effect (63). 

Williams et al. discussed the dependence of the shift factor temperature 𝑇 relative to the reference 
temperature as 𝑎(𝑇)  and defined it as Williams-Landel-Ferry (WLF) shift factor (64): 

( )
log 𝑎(𝑇)  = − [6] 

(  ) 

where: 

𝑇= Shifted temperature (or the selected temperature); and 

𝐶  and 𝐶  = Empirical coefficient. 

Log-Linear Shift factor is one of the simplest functions to determine the asphalt concrete shift 
factors (not generally for the binders) (65), which has only one degree of freedom. Log linear 
function can be defined as: 

log 𝑎  = 𝐶 (𝑇 − 𝑇 ) [7] 

Modified Kaelble method is somehow similar to WLF shift factor and it is mostly used for asphalt 
concrete mixtures. Modified Kaelble shift factor is defined as: 

( )
log 𝑎(𝑇)  = − [8] 

 | | 

Arrhenius method is a one-coefficient shift factor, which is mostly used for asphalt concrete 
mixtures and can be determined as follows: 

log 𝑎  = 𝐴( − ) [9] 
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TTSP Validation: In a study performed by Texas DOT, Glover et al. aimed to develop an 
improved technique for asphalt long-term pavement performance using dynamic shear rheometer 
(DSR) test. DSR is considered to perform the measurements with angular velocity of 0.005 rad/s 
at 15 ℃. Authors proposed a time-temperature superposition shift to 44.7 ℃ and 10 rad/s to 
introduce a method that is easily accessible to standard laboratory equipment. Also, the effect of 
polymer modification and aging on shift factor of some asphalt concrete specimens (Glover et al., 

 

2001). Based on the results provided in this study, the comparison of DSR function ( ) at 15 
/⁄  

℃ and 0.005 rad/s show satisfactory agreement with the DSR function values at 10 rad/s and 44.7 
℃ for several asphalts (Figure 14). This fact implies the reasonable capability of TTSP to simulate 
AC behavior at a specific temperature and frequency using results obtained at a more preferable 
temperature and respective frequency (which is determined using shift factor functions). 

Figure 14. Increase of DSR function at a temperature and shifted temperature (66). 

Walubita et al. conducted uniaxial static-direct loading test with a strain-controlled condition to 
evaluate master curve development techniques including Arrhenius, Williams–Landel–Ferry 
(WLF), and a proposed sum of square error (SSE) method (67). In this research, the controlled 
strain was limited to 200 micro strain and relaxation tests were conducted at 3 different 
temperatures (10, 20, and 30℃). The authors compared the experimental data to the implemented 
techniques and concluded that Arrhenius and the Williams–Landel–Ferry (WLF) satisfactory 
results (r-squared=0.997) if appropriate constants were used (Figure 15). 
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Figure 15. The developed master curve using WLF (67). 

Forough et al. evaluated 5 master curve development shifting techniques, including Numerical, 
Log-Linear, WLF, Modified Kaelble, and Arrhenius. They tested 72 AC specimens with different 
aggregate gradation, asphalt content, aging conditions at four different temperatures. Experimental 
data was obtained using direct tension relaxation test at a controlled strain level of 200 microstrain 
(62). According to the calculated relaxation modulus in different conditions and using mean 
normalized error (MNE), Arrhenius shift function had the least MNE value in all temperatures, 
binder percent, and etc. moreover, the high r-square value (approximately 98%) demonstrates the 
capability of TTSP technique (Table 2). 

Table 2. Statistical comparison among shifting methods conducted by Forough et al. (62). 
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4.3.3. Methodology 
The effect of truck platooning was evaluated using the mechanical strain outputs obtained from 
dynamic FEM simulation. In order to develop the FEM model, axle weight, material 
characteristics, and temperature data are implemented. Further details are provided in model 
development section. Figure 16 illustrates a schematic layout of this study. Pavement 
characteristics including layers thickness, modulus of elasticity, Poisson ratio, and dynamic 
modulus; traffic analysis including axle loads spectrum-distribution; platooning specification 
including wheel wandering, axle configuration, and truck speed as well as the seasonal temperature 
were attained. 

Figure 16. Schematic layout of the study. 

In order to simulate the viscoelastic behavior of the AC layers, the truck speed, pavement 
temperature, and dynamic modulus data are analyzed. The viscoelastic behavior is defined in terms 
of time domain Prony series, which is discussed in the pavement characteristics section. Finally, 
the MEPDG method is implemented to quantify the fatigue and permanent deformation damage 
based on the ABAQUS outputs (resulting mechanical strains). 

Traffic Analysis: In this analysis, the traffic data including traffic distribution and truck axle 
loading spectrum for IH-35 was gathered from TxDOT database prepared by Texas Transportation 
Institute. Table 3 shows the analyzed traffic data in terms of axle type (i.e., steering, non-steering 
single axle, tandem, and quad) and axle distribution (the share of each axle load magnitude 
compared to total traffic volume). For each axle type the red and green spectrum illustrated higher 
and lower percentage share, respectively. 
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Table 3. The analyzed traffic data for different axle types. 

Steering 
Axle 
Load 
(kips) 

Percent Non-
Steering 
Single 
Axle 
Load 

Percent Tandem 
Axle 
Load 
(kips) 

Percent Tridem 
Axle 
Load 
(kips) 

Percent Quad 
Axle 
Load 
(kips) 

Percent 

3 0.7 3 6.4 6 0.0 12 15.4 12 0.0 

4 0.4 4 5.6 8 0.0 15 8.4 15 0.0 

5 0.6 5 6.7 10 4.9 18 10.0 18 0.0 

6 0.9 6 5.2 12 6.7 21 7.1 21 0.0 

7 2.4 7 6.0 14 7.7 24 5.2 24 0.0 

8 3.5 8 6.5 16 8.6 27 3.4 27 0.0 

9 7.9 9 6.5 18 9.1 30 6.4 30 0.0 

10 12.5 10 5.5 20 8.8 33 6.5 33 0.0 

11 22.3 11 6.3 22 8.2 36 5.0 36 0.0 

12 19.6 12 4.9 24 7.6 39 4.7 39 0.0 

13 21.6 13 6.8 26 8.4 42 7.8 42 0.0 

14 6.2 14 6.6 28 7.7 45 8.5 45 0.0 

15 0.7 15 5.9 30 7.6 48 3.1 48 0.0 

16 0.4 16 4.8 32 7.1 51 1.8 51 0.0 

17 0.2 17 5.4 34 4.7 54 2.8 54 0.0 

18 0.1 18 5.4 36 1.9 57 1.8 57 31.8 

19 0.0 19 2.6 38 0.7 60 0.6 60 31.8 

20 0.0 20 1.7 40 0.2 63 0.6 63 0.0 

21 0.0 21 0.6 42 0.1 66 0.0 66 0.0 

22 0.0 22 0.3 44 0.0 69 0.3 69 0.0 

23 0.0 23 0.1 46 0.0 72 0.3 72 0.0 

24 0.0 24 0.1 48 0.0 75 0.0 75 0.0 

25 0.0 25 0.0 50 0.0 78 0.0 78 0.0 

26 0.0 26 0.0 52 0.0 81 0.0 81 0.0 

27 0.0 27 0.0 54 0.0 84 0.0 84 0.0 

28 0.0 28 0.0 56 0.0 87 0.0 87 31.8 

29 0.0 29 0.0 58 0.0 90 0.0 90 0.0 

30 0.0 30 0.0 60 0.0 93 0.0 93 0.0 

31 0.0 31 0.0 62 0.0 96 0.0 96 1.6 

32 0.0 32 0.0 64 0.0 99 0.0 99 0.0 

33 0.0 33 0.0 66 0.0 102 0.0 102 3.1 

Temperature: The temperature data for the IH-35 is measured at 0, 3.5, 11, and 22 inches deep 
using multi depth temperature probes. Hence, temperature at any depth can be extrapolated using 
the collected data. The average seasonal temperatures are illustrated in Figure 17. The pavement 
temperature further was used to develop the TTSP relationship. 
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Figure 17. Pavement seasonal temperature data for IH-35. 

Pavement Characteristics and Road Section Description: In this research, the studied pavement 
section is located in interstate highway 35 (IH-35) in San Antonio. The selected section in one of 
the typical sections designed to evaluate the Texas perpetual pavements (PP) (68,69). The details 
of typical and the studied pavement section are provided in Tables 4 and 5, respectively. The 
section is comprised of totally 21.5-inch thick asphalt mixture layers and a 6-inch 3% lime-treated 
subbase. 

Table 4. Typical section of PP constructed in Texas (68). 
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Table 5. The selected section for the study (The Texas PP Database, Texas Transportation Institute) (68). 

As demonstrated in Table 5, the pavement structure of the selected section is a combination of 
porous friction course (PFC), stone matrix asphalt (SMA), stone-filled hot mix asphalt (SFHMA), 
SFHMA rut-resistance layer (RRL), and rich-bottom layer (RBL). Mix design specifications of 
each layer is provided in Table 6. 

Table 6. Mix design specifications of the selected section (68). 

Master Curves: The studied pavement section is comprised of five complex asphalt layers. The 
dynamic modulus data for all layers where obtained, analyzed, and used to develop the master 
curves and Prony series. Master-curves are used to predict the pavement modulus of elasticity or 
𝐸∗ at the required temperatures (seasonal averages) using Arrhenius shift-factor equation: 

 – 
log(𝐸∗) = 𝛿 + [10] 

( )   

Figure 18 demonstrates the developed master curves for all of the 5 AC layers, which were 
obtained based on the dynamic modulus data conducted at different temperatures. 
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Figure 18. Developed master curve for the rich bottom layer porous friction coarse (PFC), stone matrix asphalt (SMA), 
stone-filled hot mix asphalt (SFHMA), SFHMA rut-resistance layer (RRL), and rich-bottom layer (RBL). 

Prony Series: As discussed before, viscoelastic materials physical characteristics are highly 
dependent on the temperature and loading rate (frequency). Depending on the material properties 
and testing temperature, viscoelastic materials behave linearly at very small strains (up to 100 
microstrain) (70). Linear viscoelasticity can be mathematically characterized using various 
proposed models. The generalized Maxwell model (or the Maxwell–Wiechert model) has been 
used frequently used to characterize linear viscoelasticity (71,72). Mazurek and Iwaski evaluated 
the accuracy of different models to characterize AC viscoelasticity within the linear region and 
concluded that the generalized Maxwell model has the highest accuracy compared to other models 
(r2= 0.995) (73). The generalized Maxwell model is basically comprised of a spring being attached 
to a set of Maxwell components in parallel and can be mathematically defined as (74): 

 
𝐸(𝑡) = 𝐸  + 𝐸 𝑒 + 𝐸 𝑒  + ⋯ [11] 

where: 

𝐸 : Elastic modulus constant of the spring i; 
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𝜏 : Relaxation time for the dashpot j; and 

𝑡: Loading time. 

FEM Model Development: 

In this study, three-dimensional finite element models are developed using Dassault SIMULIA 
ABAQUS 2017 to simulate the movement of real rotating truck wheel on the surface of a pavement 
section. Based on the structural layer configuration, axle weight and distribution analysis, 
viscoelastic-elastic characteristics, and temperature data, 2 separate FEM models were considered 
to assess fatigue and permanent deformation (rutting) damage (Figure 19). The specifications of 
each model are provided in Table 7. 
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Vertical Strain at Mid-
Depth of AC Layers 
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Figure 19. Model development flowchart and critical points to assess rutting and fatigue damage. 

Mesh Size: Mesh size selection has a significant effect on finite element modeling and each model 
requires a specific mesh size value to deliver acceptable results. Some research aim at mesh size 
optimizations and recommended a range of 15 to 25.4 mm for AC pavement simulation (75-77). 
However, mesh size is unique for each model and should be determined using field or experimental 
data. 

In this research, the size of mesh was determined in order to increase the accuracy while keeping 
the analysis time within a practical range. To this end, the meshing near the tire loading area was 
set to be finer while a coarser mesh was used for the out-of-wandering area. a 2×2-inch and 2×4 
mesh sizes were selected for the loading area (40-inch width) and the out-of-wandering area, 
respectively. 
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Table 7. Specifications of the static and the dynamic model. 

Fatigue damage analysis Permanent deformation damage 
analysis 

Dimension 100-meter long model 300×300-inch model 
Material Characteristics 

Loading Type 
Viscoelastic material 

Dynamic loading 
Elastic material 
Static loading 

Other Considerations Finer mesh in the rolling 
area 

Uniform meshing 

Tire Configuration: In order to the assess the effects of axle configuration, 3 different 
configurations including single, tandem (double tire), and tridem (double tire) are evaluated. Based 
on the values considered in the MEPDG and also the axle distance for regular truck type 3S2, the 
axle distance was determined equal to 4 ft (center to center distance). Also, there are 
recommendations for tire wheel distance (in double tire configuration) and tire side-clearance (78) 
and the suggested tire side-clearance values vary from 1 to 2 inches. In this model a side-clearance 
of 1.5 inches (or a 12.5-inch center to center side distance) is selected. Figure 20 shows tire 
configuration for a tandem axle and internal pressure arrows to simulate the tire inflation pressure. 

Figure 20. Tandem axle configuration and inflation pressure. 

Fatigue Analysis: The wheel load related cracking or fatigue is one of the fundamental factors 
that is considered in mechanistic-empirical (M-E) design of pavements. Fatigue occurs due to the 
tensile strain at the surface and bottom of the asphalt mixture layer, which gradually leads to 
longitudinal and alligator cracking, respectively. Based on the Palmgren-Miner hypothesis, the 
accumulated fatigue damage can be calculated using the equation below (79): 

 , , , ,  
𝐹𝐷 = ∑ [12]  

, , , ,  

where: 

𝑛 , , , ,  = Number of applied axle load for condition 𝑖, 𝑗, 𝑘, 𝑙, 𝑚; 

𝑁 , , , ,  = Number of allowed pass of axle load to reach fatigue cracking failure for condition 
𝑖, 𝑗, 𝑘, 𝑙, 𝑚; 
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𝑖 = the specific month or any considered time-span to account for temperature or moisture 
variations; 

𝑗 = time of the day; 

𝑘 = axle load configuration; 

𝑙 = axle load magnitude; and 

𝑚 = wheel path lateral wandering condition. (79) 

Finn et al. implemented an alteration of AI pavement design approach to predict the number of 
standard load axles to reach fatigue cracking failure. Finn et al.’s proposed equation benefits the 
fatigue life prediction by taking into account the AC mixture’s volumetric properties. The equation 
can be defined as follows: 

.  × 𝐸 .  𝑁  = 𝐾 × 𝜀  [13] 

where: 

𝑁 : Number of allowed load axles to reach fatigue cracking failure; 

𝐾 , 𝐾 : Constant fitting parameters equal to 3.291 and 0.854, respectively; and 

𝐾 : Fitting parameter related to pavement thickness and mixture volumetric parameters. 

𝐾  = 0.00432 × 𝑘  × 𝐶 [14] 

𝐶 = 10  [15] 

𝑀 = 4.84 ×  − 0.69  [16] 
  

where: 

𝑉  = air volume divided by the total volume of the mixture; and 
𝑉  = Volume of the mix divided by the total volume of the mixture. 

For bottom-up fatigue cracking: 

𝑘  = .  [17] 
.  . . ×  

For top-down fatigue cracking: 

𝑘  =  [18] 
.  .  . ×  

where: 

ℎ  = AC thickness in inches. 
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Permanent Deformation Analysis: In NCHRP 1-37A, Permanent deformation in a pavement 
structure is measured by adding up the plastic deformation in all substructures. To this end, the 
plastic strain is determined using the vertical resilient strain, number of axle pass for each axle 
group, and the pavement temperature. 𝑘  is the coefficient to account for the confinement condition 
of viscoelastic material with increase in depth. 

  ℎ𝑃𝐷 = ∑ 𝜀  [19]  

𝑘  × 10 .  × 𝑇 .  × 𝑁 .   
= [20] 

 

𝑘  = (𝐶  + 𝐶  𝑑𝑒𝑝𝑡ℎ) × 0.328196  [21] 

𝐶  = −0.1039 × ℎ  + 2.4868 × ℎ  − 17.342 [22] 

𝐶  = 0.0172 × ℎ  − 1.7331 × ℎ  + 27.428 [23] 

where: 

𝑇 = Pavement temperature (at mid-depth); 
𝑁 = Number of loading cycles; 
𝑘  = Depth coefficient; 
𝜀  = Plastic strain; and 
𝜀  = Elastic vertical strain at mid-depth of the AC layer. 

Generally, the constitutive models are implemented to interpolate and assess the deformation 
inelasticity and time-temperature dependency behavior of materials (80). 

Overloading and Load Limits: The maximum load magnitudes for the interstate highways 
(including the IH-35) are limited to 20, 34, and 80 kips for single, tandem, and the gross vehicle 
weight (GVW) (81). There is no limitation for tridem axles; however the bridge formula can be 
used to calculate the allowable axle loading for any number of consecutive axles (82): 

 
𝑊 = 500  + 12𝑁 + 36  [24] 

 

where: 

𝐿 = distance between the farthest (extreme) axles (ft.); 
𝑁 = Number of axles considered in an axle loading group; and 
𝑊 = The total weight allowed to be induced on the axle loading group (lb.). 
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5. ANALYSIS AND FINDINGS 

5.1. Results of Corridor Level Analysis 
The results of truck platooning scenarios are presented in Tables 8, 9, 10, & 11. In Tables 8 & 10, 
the simulation result of truck platoons in peak and off-peak hours are recorded. In Tables 9 & 11, 
the percentage change of the platoon scenario results from the reference scenario were estimated. 

Table 8. Result of Simulation Scenario’s (Peak hour). 

Time 
period 

MPR Platoon 
size 

Intra 
platoon 
distance 

TND TTM TTD Fuel Emission 
CO2 

Emission 
NOx 

Emission 
PM10 

TIT 

reference 0 0 0 1992.1 794.7 6381.7 3962.5 16.26 43.36 18227.5 282.119 

peak 25 2 0.3 3432.5 825.6 7744.7 3992.05 16.47 43.92 18363.43 498.494 

peak 50 2 0.3 1972.8 827.9 6217 3953.05 16.44 43.84 18184.03 269.741 

peak 100 2 0.3 2335.7 910 5974.8 3951.65 16.44 43.84 18177.59 373.161 

peak 25 3 0.3 2613.2 838.9 7759.2 3981.8 16.56 44.16 18316.28 343.406 

peak 50 3 0.3 1975.9 779.2 7098.4 3968.65 16.47 43.92 18255.79 265.8 

peak 100 3 0.3 4039.2 832.6 7312.4 4014.5 16.38 43.68 18466.7 552.981 

peak 25 2 0.5 1934.8 763.8 6981.2 3918.4 16.26 43.36 18024.64 286.814 

peak 50 2 0.5 2339 869.9 6071.7 3923.1 16.29 43.44 18046.26 347.584 

peak 25 3 0.5 1836 876.2 7033.7 3960.2 16.35 43.6 18216.92 257.033 

peak 50 3 0.5 2543.4 911.6 6464.7 3915.95 16.23 43.28 18013.37 391.923 

peak 25 2 0.7 2177 907.5 6297.9 3895.55 16.17 43.12 17919.53 313.317 

peak 50 2 0.7 1094.5 639 6432.2 3855.85 16.05 42.8 17736.91 140.76 

peak 25 3 0.7 2320.3 751.6 6464.9 3897.5 16.08 42.88 17928.5 287.276 

peak 50 3 0.7 2960.6 1058.9 5960.7 3875.6 16.08 42.88 17827.76 393.009 

Table 9. Percent change from reference scenario (Peak hour). 

Time 
period 

Platoon 
size 

Intra 
platoon 
distance 

MPR TND TTM TTD Fuel Emission 
CO2 

Emission 
NOx 

Emission 
PM10 

TIT 

peak 2 0.3 25 72.31 3.89 21.36 0.75 1.29 1.29 0.75 76.7 

peak 2 0.3 50 -0.97 4.18 -2.58 -0.24 1.11 1.11 -0.24 -4.39 

peak 2 0.3 100 17.25 14.51 -6.38 -0.27 1.11 1.11 -0.27 32.27 

peak 3 0.3 25 31.18 5.56 21.59 0.49 1.85 1.85 0.49 21.72 

peak 3 0.3 50 -0.81 -1.95 11.23 0.16 1.29 1.29 0.16 -5.78 

peak 3 0.3 100 102.76 4.77 14.58 1.31 0.74 0.74 1.31 96.01 

peak 2 0.5 25 -2.88 -3.89 9.39 -1.11 0 0 -1.11 1.66 

peak 2 0.5 50 17.41 9.46 -4.86 -0.99 0.18 0.18 -0.99 23.2 

peak 3 0.5 25 -7.84 10.26 10.22 -0.06 0.55 0.55 -0.06 -8.89 

peak 3 0.5 50 27.67 14.71 1.3 -1.17 -0.18 -0.18 -1.17 38.92 

peak 2 0.7 25 9.28 14.19 -1.31 -1.69 -0.55 -0.55 -1.69 11.06 

peak 2 0.7 50 -45.06 19.59 0.79 -2.69 -1.29 -1.29 -2.69 -50.11 

peak 3 0.7 25 16.48 -5.42 1.3 -1.64 -1.11 -1.11 -1.64 1.83 

peak 3 0.7 50 48.62 33.25 -6.6 -2.19 -1.11 -1.11 -2.19 39.31 
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The visualization of truck platoon scenario results is presented in Figures 21, 22, and 23. In Figure 
21, the percentage change result for peak and off-peak hours are shown. In Figures 22 & 23, the 
change of performance indicators (PI) with MPR (market penetration rate/ % equipped truck) for 
peak and off-peak hours are presented. 

Table 10. Percent change from reference scenario (Off-Peak hour). 

Time 
period 

MPR Platoon 
size 

Intra 
platoon 
distance 

TND TTM TTD Fuel Emission 
CO2 

Emission 
NOx 

Emission 
PM10 

TIT 

reference 0 0 0 1261.8 690.4 5045.7 3242.7 13.77 36.72 14916.42 179.81 
Off-peak 25 4 0.3 1390.5 695.9 4988.2 3262.25 13.89 37.04 15006.35 169.28 
Off-peak 50 4 0.3 1030.6 702 5552.2 3212.65 13.74 36.64 14778.19 122.51 
Off-peak 100 4 0.3 1053.2 702 4648.7 3235.25 13.77 36.72 14882.15 139.39 
Off-peak 25 5 0.3 807.4 666.7 4915 3212.8 13.8 36.8 14778.88 98.916 
Off-peak 50 5 0.3 1089.9 671 4453.8 3279.65 13.77 36.72 15086.39 116.25 
Off-peak 100 5 0.3 1370 792.3 4734.3 3261.9 13.83 36.88 15004.74 189.65 
Off-peak 25 4 0.7 957.6 665.7 5363.1 3262.4 13.8 36.8 15007.04 110.41 
Off-peak 50 4 0.7 1000.2 639 4540.3 3127.05 13.38 35.68 14384.43 128.12 
Off-peak 25 5 0.7 1109.5 750.6 4929.3 3112.65 13.38 35.68 14318.19 165.69 
Off-peak 50 5 0.7 1153.5 671 4517.1 3219.45 13.62 36.32 14809.47 151.73 
Off-peak 50 3 0.7 783.6 726.5 4183.2 3191.2 13.62 36.32 14679.52 106.99 
Off-peak 25 3 0.7 1060.2 684.3 3933.8 3162.9 13.41 35.76 14549.34 135.82 
Off-peak 50 5 0.5 1166.2 671 4319.1 3256.1 13.74 36.64 14978.06 162.34 
Off-peak 25 4 0.5 1063.2 722.4 4884.1 3249.4 13.8 36.8 14947.24 136.86 
Off-peak 50 4 0.5 863.6 671 4579.6 3167.5 13.5 36 14570.5 115.48 
Off-peak 25 5 0.5 1065.4 662.7 5784.2 3198.35 13.68 36.48 14712.41 135.12 
Off-peak 50 3 0.5 1168.5 694.9 4402.2 3216.1 13.68 36.48 14794.06 176.12 
Off-peak 25 3 0.5 990.5 662.7 3925.8 3171.4 13.53 36.08 14588.44 127.59 
Off-peak 50 3 0.3 1122.1 639 4592.7 3250.3 13.8 36.8 14951.38 144.05 
Off-peak 25 3 0.3 1282.5 828.4 4091.2 3218.95 13.68 36.48 14807.17 181.59 
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Table 11. Percent change from reference scenario (Off-Peak hour). 

Time 
period 

Platoon 
size 

Intra 
platoon 
distance 

MPR TND TTM TTD Fuel Emission 
CO2 

Emission 
NOx 

Emission 
PM10 

TIT 

Off-peak 3 0.3 25 1.64 19.99 -18.92 -0.73 -0.65 -0.65 -0.73 0.99 
Off-peak 3 0.3 50 -11.07 -7.44 -8.98 0.23 0.22 0.22 0.23 -19.89 
Off-peak 4 0.3 25 10.2 0.8 -1.14 0.6 0.87 0.87 0.6 -5.86 
Off-peak 4 0.3 50 -18.32 1.68 10.04 -0.93 -0.22 -0.22 -0.93 -31.87 
Off-peak 4 0.3 100 -16.53 1.68 -7.87 -0.23 0 0 -0.23 -22.48 
Off-peak 5 0.3 25 -36.01 -3.43 -2.59 -0.92 0.22 0.22 -0.92 -44.99 
Off-peak 5 0.3 50 -13.62 -2.81 -11.73 1.14 0 0 1.14 -35.35 
Off-peak 5 0.3 100 8.58 14.76 -6.17 0.59 0.44 0.44 0.59 5.47 
Off-peak 3 0.5 25 -21.5 -4.01 -22.2 -2.2 -1.74 -1.74 -2.2 -29.04 
Off-peak 3 0.5 50 -7.39 0.65 -12.75 -0.82 -0.65 -0.65 -0.82 -2.05 
Off-peak 4 0.5 25 -15.74 4.63 -3.2 0.21 0.22 0.22 0.21 -23.89 
Off-peak 4 0.5 50 -31.56 -2.81 -9.24 -2.32 -1.96 -1.96 -2.32 -35.78 
Off-peak 5 0.5 25 -15.57 -4.01 14.64 -1.37 -0.65 -0.65 -1.37 -24.85 
Off-peak 5 0.5 50 -7.58 -2.81 -14.4 0.41 -0.22 -0.22 0.41 -9.72 
Off-peak 3 0.7 25 -15.98 -0.88 -22.04 -2.46 -2.61 -2.61 -2.46 -24.46 
Off-peak 3 0.7 50 -37.9 5.23 -17.09 -1.59 -1.09 -1.09 -1.59 -40.5 
Off-peak 4 0.7 25 -24.11 -3.58 6.29 0.61 0.22 0.22 0.61 -38.6 
Off-peak 4 0.7 50 -20.73 -7.44 -10.02 -3.57 -2.83 -2.83 -3.57 -28.75 
Off-peak 5 0.7 25 -12.07 8.72 -2.31 -4.01 -2.83 -2.83 -4.01 -7.86 
Off-peak 5 0.7 50 -8.58 -2.81 -10.48 -0.72 -1.09 -1.09 -0.72 -15.62 

Figure 21. Percentage change result visualization for Peak and Off-Peak hour. 
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        Figure 22. Scenario Visualization (Peak hour flow). 
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Figure 23. Scenario Visualization (Off-Peak hour flow). 

The results of the truck platooning scenarios were compared with the reference scenario. The result 
showed that the truck platooning may have a positive impact on operational, environmental, and 
safety aspects in off-peak hours. For example, if we have a platoon size of 5 with an intra-platoon 
distance of 0.3 and an mpr of 25%, the TND will be reduced by 36% and the TIT will be reduced 
by 45% compared to the reference. Also, fuel consumption will be reduced by 1% compared to 
the reference. 

In peak hours, the truck platoons may deteriorate the operational and safety aspects of traffic in 
the road network. High values of TND and TIT were observed in peak hours due to truck platoons 
(Fig. 21). For example, if we have a platoon size of 3 with an intra-platoon distance of 0.7 and an 
mpr of 50%, the TND will be increased by 48.6% and the TIT will be increased by 39.3% 
compared to the reference. But the fuel consumption will be reduced by 2.2% compared to the 
reference. 

5.2. Analysis and Result of Network Level Analysis 

5.2.1. Data Analysis 
Figure 24 presents examples of time-series of speed, acceleration, time headway, and space 
headway of the probe vehicles using ACC and their three immediate followers in the first run of 
data collection. According to this figure, the time-series of the vehicles using ACC (3541, 3544, 
and 3548) are more similar compared to the other three immediate following vehicles. This 
similarity is more noticeable for the time headway (figure 25.c) and space headway (figure 25.d) 
series. 
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Figure 24. Time-space diagram of the vehicles for ten minutes on the Southbound of I-35, Austin, TX, during the 
morning peak period. 

Flow-density plots with aggregation level of 30 seconds for individual lanes as well as their 
average are presented in Figure 26. According to these plots, the traffic dynamics of the leftmost 
lanes (Figures 26.a, 26.b) are different from the traffic dynamics of the rightmost lanes (Figures 
26.c, 26.d). The flow and density data points for the lanes one and two (leftmost lanes) are more 
in the congested region compared to the data points for the lanes three and four (rightmost lanes). 

These flow-density graphs (and associated speed-density curves) are utilized in the simulation (see 
the next section) to capture the effects of platooning on traffic flow dynamics. Considering the 
demand level at the I-35 corridor (around 6000 veh/hr in this location), the simulation is setup to 
utilize the collected data to ensure realistic movement of vehicles across the corridor. 

5.2.2. Impact of Truck Platooning on I-35 
This section presents a simulation effort to capture the effects of truck platooning on I-35 in Austin, 
TX. I-35 is among the nation’s interstate highways with highest truck traffic. The high truck 
volume on I-35 creates a lot of issues in Austin, TX. Austin, a fast-growing city in Texas, already 
faces congestion problem. The increasing truck traffic through this city just adds to the 
complication of managing congestion throughout this city. While truck platooning has been mainly 
proposed for energy consumption reduction, it is among the technologies that can potentially ease 
the negative impacts of truck traffic on a corridor. Accordingly, in this section, we will provide an 
assessment on the impacts of truck platooning on traffic flow dynamics on I-35 in Austin, TX. The 
simulation setup contains the section that was utilized in the data collection. Such a selection 
ensures the validity of using the generated speed-density (and flow-density curves) in the 
simulation platform. 
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Figure 27 illustrates the impact of platooning on traffic flow dynamics. All the simulations in this 
figure are conducted with 15% trucks in the traffic stream and the size of the platoon does not 
change during the simulation. This figure shows that as the size of platoons decreases, the scatter 
in fundamental diagram decreases and the traffic flow becomes more stable. This can be 
considered trivial as longer truck platoons introduce certain complications for other drivers. 
Moreover, lane-changing becomes increasing difficult as the size of the platoon increases, which 
can result in shockwaves and scatter in flow-density curves. Note that flow-density curves (and 
traffic flow dynamics) do not change significantly for platoon sizes over 4-trucks, as any lane-
changing for the platoon becomes almost impossible for 4-trucks and more platoons. 

(a) Speed (m/s) 

(b) Acceleration (m/s2) 

(c) Time Headway (s) 

47 



 

    
           

             
                 

              
              

             
               

              
  

(d) Space Headway (m) 
Figure 25. Trajectory data example of ACC vehicles and their followers. 

Figure 28 illustrates the flow-density curves for various penetration rates of 3-truck platoons. 
Similar to Figure 27, it is also assumed that the formation of the platoon remains the same 
throughout the segment. The figure shows that as the number of truck platoons increases, 
congestion improves. In other words, higher number of truck platoons translates into less scatter 
in fundamental diagram. This finding contradicts the general assumption that higher number of 
trucks can result in more congestion. In fact, this finding shows that autonomous truck platooning 
can help mitigate congestion, although the impact is not as obvious as autonomous passenger 
vehicles. 
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(a) Lane 1 (b) Lane 2 

(c) Lane 3 (d) Lane 4 

(e) Overall 
Figure 26. Flow-density plots for each lane with 
aggregation resolution of 30 seconds. 
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(a) 2-Truck Platoons (b) 3-Truck Platoons 

(c) 4-Truck Platoons (d) 5-Truck Platoons 
Figure 27. Flow-density plots for different platoon sizes. 
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(a) 0% Trucks (b) 5% Trucks 

(c) 10% Trucks (d) 15% Trucks 
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(e) 25% Trucks 
Figure 28. Flow-density plots for different market penetration rates of autonomous trucks (3-truck platoons). 

5.3. Results and Discussion of Pavement Analysis 
Table 12 demonstrates the analysis levels for load magnitude, number of axles, tire speed, 
pavement temperature, wander control, tire pressure. Load magnitudes are considered in way to 
the maximum, mode, and allowable load magnitude for single, tandem, and tridem axles. The 
overloading effect is evaluated using the maximum load magnitude. 

As previously stated, the tire wandering follows a normal distribution pattern, and the fixed-path 
truck platooning is analyzed as the worst-case scenario. Although some other patterns have been 
suggested (83), yet their implementation feasibility from the safety and technology standpoints are 
not clearly validated. 

In this analysis, the tire speed level is considered equal to 70 mph with reference to speed limit 
regulations for IH-35 (San Antonio to Austin) (84). Tire inflation pressure levels were selected 
based on the literature review and common truck tire inflation pressure range (57,85). The MEPDG 
design considers a tire inflation or contact pressure of 120 psi which represent the tire pressure of 
heavy trucks during hot days (86). Figure 29 illustrates a tridem axle simulation using ABAQUS 
software. 
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Figure 29. Tridem axle simulation using ABAQUS software. 

Table 12. Analysis levels for each variable. 

Load Magnitude 

Maximum load for 
each type of axle 

Load with the 
highest frequency 

No. of 
Axles 
Single 

Tandem 

Speed 

70 mph 

70 mph 

Temperature 

Seasonal 
average 
Seasonal 
average 

Wander 
Control 

Fixed pathway 

Normal 
wandering 

Tire 
Pressure 

80 psi 

100 psi 

Representative 
Overload 

Tridem 70 mph Seasonal 
average 

120 psi 

5.3.1. Model Validation 
The developed FEM model is validated using the field data obtained using multi-depth 
deflectometers (MDDs) at the bottom of the asphalt layer, bottom of the base layer, and the depth 
of 8 inches from the subgrade layer surface. Figure 30 shows the field-measured deflections for a 
3S2 truck travelling at a speed of 70 mph. A schematic of 3S2 truck is also shown in the bottom 
of the figure. 3S2 truck is a 5-axle vehicle comprised of a single steering axle and 2 tandem axles 
(a total of 4 axles). The axle loads for the test truck were assigned to be 10.5 and 34 kips for single 
and tandem axles, respectively. 

In order to validate the developed FEM model, a single and tandem axle were separately simulated 
with same configuration and characteristics of the test truck. For the tandem axle, it is assumed 
that the 34 kips load is equally distributed among all tires (4.250 kips each). 
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Figure 30. The field-measured deflections for the test truck. 

Figures 31 and 32 show the deflection values obtained for the 34 kips tandem axle on the PFC and 
subbase layer surface, respectively. Results show that the FEM model deflection value can 
approximate the field data values with acceptable accuracy. Figure 33 and 34 demonstrate the 
deflection results for the 10.5 kips steering axle (single axle/single tire) on the PFC and subbase 
layer surface, respectively. The obtained deflection on the PFC layer from the FEM model agrees 
with the field measurement value; however, the deflection value on the subbase layer (1.7 mils) is 
less than the field-measured deflection. With respect to complex nature of AC mixtures and also 
various influential ambient parameters, it can be concluded that the developed FEM model with 
the current mesh size is capable of simulating the traffic loads with an acceptable error. 

Figure 31. PFC layer surface deflection induced by the 34 kips tandem axle. 
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Figure 32. Subbase layer surface deflection induced by the 34 kips tandem axle. 

Figure 33. PFC layer surface deflection induced by the 10.5 kips single axle (steering). 

Figure 34. Subbase layer surface deflection induced by the 10.5 kips single axle (steering). 
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5.3.2. Overloading Effect 
As discussed earlier, the MEPDG pavement design procedure accounts for both legal and 
overweight loads in terms of the loading intervals. Therefore, future overloading predictions are 
estimated based on the present truck overloading data. Nonetheless, the overloading effect can be 
still evaluated using the overweight axle loads. As previously noted, the FHWA weight limit for 
single and tandem axles are 20 and 34 kips, respectively. Due to the fact that neither the FHWA 
nor the Texas DOT has imposed weigh limits on tridem axle loads (except the 80 kips limit for 
GVW), the limit was selected based on the recommended magnitudes recommended by other 
states (87). Most of the states have recommended a range of 42 to 54 kips weight limit; hence, a 
weight limit of 54 kips is selected for tridem axles to eliminate any possible overestimation of 
overloading effect (Figure 35). 

Tridem Axle Distribution 
18.0 

16.0 

14.0 

12.0 

10.0 

8.0 

6.0 

4.0 

2.0 

0.0 
12 15 18 21 24 69 72 

Figure 35. Tridem axle-loads distribution (the overweight axle-load frequencies are shown in red). 

In order to evaluate the effects of overloading, the “weighted average” of overweight axles for 
single, tandem, and tridem are considered in the analysis. This value is simply obtained by 
averaging the overweight axle-loads with respect to their frequency. The red columns in Figure 
35 show the overweight tridem axle-loads as well as their frequencies. Table 13 shows the 
representative axle loads and their frequencies. 

Table 13. Overloading representative axle loads and their frequencies. 

Fr
eq

ue
nc

y 
(P

er
ce

nt
) 

1.8 
0.6 0.6 

15.4 

8.4 

10.0 

7.1 

5.2 

3.4 

6.4 6.5 

5.0 4.7 

7.8 
8.5 

3.1 
1.8 

2.8 

0.0 0.3 0.3 

27 30 33 36 39 42 45 48 51 54 57 60 63 66 

Axle Load (kips) 

Representative Axle Weight (kips) 
Single Axle 

22 
Tandem Axle 

40 
Tridem Axle 

63 
Frequency (%) 1.0 2.8 3.7 

5.3.3. Wandering Effect 
As mentioned earlier, the stress and strain values would decrease with increase in the horizontal 
distance to loading point. This trend particularly lays emphasis on wheel path wandering effect 
and the resulting induced damage. By implementing wandering techniques, the structural impact 
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of a specific wandering loading axle can be equivalent to the impact of the lighter loading axle 
groups with a fixed-path traffic. 

Some research is aimed to evaluate the wandering factors and patterns. Factors such as weather 
condition, time, truck load, traffic factors and road characteristics are considered to affect lateral 
wandering length and distribution. Buiter et al. evaluated the impact of the lane width on lateral 
wandering of vehicles and calculated shift factors to design the pavement thickness (88). 

The MEPDG design also categorizes the axle load spectrum into specific intervals based on the 
axle type. The intervals for single, tandem, and tridem axles are determined to be 1000, 2000, and 
3000 lb., respectively. 

Traffic estimation (i.e., number of applied loading cycles during pavement service life) for each 
axle interval is affected by wandering effect. Surveys demonstrated that the wandering behavior 
follow a normal distribution pattern (88,89). The MEPDG thickness design method is also based 
on normally distributed lateral wander and implements this concept to statistically predict a 
realistic equivalent damage during pavement service life. Based on the Palmgren-Miner 
hypothesis, the MEPDG averages the fatigue damage (FD) at 11 different points along the lateral 
direction of moving tire. The accumulated fatigue damage can be calculated using the Palmgren-
Miner equation (88): 

 𝐷 = ∑ [25]  
 

where: 

D = Fatigue damage; 

𝑛  = standard load; and 

𝑁  = Service life. 

The tire wander is considered to have a normal distribution and the variation of the distribution is 
defined using a user defined standard deviation. The points are selected in a way to divided the 
distribution area into 10 equal-area segments which they account for 10 percent of the traffic 
volume. Figure 36 illustrates this concept using 5 points. 

(merge with paragraph above) For the fixed-path truck platooning, the maximum strain (vertically 
below the tire) would be considered for fatigue or rutting damage. In contrast, for a normally 
distributed tire-wander, the maximum strain is only applied on 20% of traffic counts for any 
specific axle load. Wandering intervals are determined using the standard deviation multiplied by 
the distribution coefficient for that specified location. In the example provided in the MEPDG 
manual (Figure 36), the suggested distribution factors are -1.28155, -0.5244, 0, 0.5244, 1.28155. 
selection 
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Figure 36. Wandering considerations using 5 points (86). 

In addition to inability of MEPDG to consider the realistic dynamic effect of the traffic loads, 
another major drawback of The MEPDG method is the limited number of points to calculate the 
stress and strain (i.e., the induced damage). Due to the complex nature of pavement analysis and 
significant variation of pavement structural response within trivial distance, number of intervals 
and assigned evaluation points are critical for future damage estimation. 

In contrast, the finite element model is not only capable of simulating the dynamic loads, but it 
also can measure the structural impact of lateral wandering for unlimited points (depending on the 
mesh size) at any depth and any distance perpendicular to moving direction. Hence, 
implementation of the FEM in pavement analysis can provide a more realistic view of complex 
nature of AC pavements and a more reliable design over its service life. 

In this approach, the evaluation points across the wheel path are not defined based on the equal 
area concept but they are determined based on the mesh fineness. For the assigned mesh size in 
this study (2-inch mesh size), the normal area between each consecutive lateral mesh are calculated 
using a normal distribution table. The MEPDG suggests a 10-inch wandering standard deviation; 
therefore, every evaluation would be evenly spaced on the normal distribution at 0.2 (2/10) 
intervals. 

5.3.4. Damage Analysis 
Fatigue Analysis: Based on the MEPDG manual, the bottom-up fatigue damage is determined 
using parameters including strain magnitude at the bottom of the AC layer, stiffness (Young’s 
modulus), thickness, and volumetric properties of the AC layer. As mentioned in the previous 
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chapter, the tensile strain for each loading condition was measured using a dynamic FEM model. 
Figure 37 shows the FEM simulation of tandem axle. 

From a structural point of view, the maximum tensile strain does not necessarily occur along the 
predefined horizontal axes (x and z directions shown in Figure 37) and instead, the principal tensile 
strain should be considered in the analysis to account for the shear strains. Figures 38 and 39 show 
the lateral and maximum principal tensile strain for a 40 kips tandem axle and Figures 40 and 41 
demonstrate the vertical and maximum principal tensile strain for a 63 kips tridem axle. 

Figure 37. Dynamic loading and axle configuration for tandem axle. 

Figure 38. Lateral strain for the 40 kips tandem axle. 
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Figure 39. Maximum principal tensile strain for a 40 kips tandem axle. 

Figure 40. Vertical strain for the 63 kips tridem axle. 

Figure 41. Maximum principal tensile strain for a 63 kips tridem axle. 
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Figure 42. Maximum principal strain at the bottom of SFHMA1' layer. 

As shown in Figure 42, the principal tensile strain increases as the probe node gets laterally closer 
to tire position then it decreases to a minimum between double tires. Higher inflation pressure 
induces higher maximum tensile strain at the wheel-path and lower magnitudes at around 20 inches 
away from the wheel center. Based on the fatigue damage analysis, tire inflation does not affect 
the fatigue damage significantly. For tire inflation pressure 120, 100, and 80 psi the ratio of fatigue 
life (FatigueLifefixed-path/FatigueLifenormal-distribution, 20-year) are 14.6, 14.7, and 15%. 

Based on the measured maximum tensile principal strain values (Table 14) at the bottom of the 
AC critical layer (SFHMA1’ layer), it can be concluded that wandering can have influential effect 
on the fatigue life for single, tandem and, tridem can be decreased in a range of 14% to 35%, in 
terms of ratio of fatigue life (FatigueLifefixed-path/FatigueLifenormal-distribution, 20-year). 

Table 14. Fatigue life ratio (FatigueLifefixed-path/FatigueLifenormal-distribution, 20-year) for single, tandem, and tridem. 

Axle Weight 

Single 
Tandem 

Maximum load for each 
type of axle 

32.3% 
15.1% 

Load with the highest 
frequency 

29.0% 
14.7% 

Representative 
Overload 

34.5% 
14.9% 

Tridem 14.7% 13.9% 15.6% 

Permanent Deformation: Similar to fatigue damage, the MEPDG permanent deformation 
evaluation is affected by induced strain levels and mechanical properties of the AC layer. As 
mentioned before, in this study, a static-loading method is used to measure the elastic vertical 
strain at mid-depth all AC layers. Figure 43 shows the static-loading FEM model for the tridem 
axle configuration. Figures 44, 45, and 46 demonstrate the vertical compressive strain values in 
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the AC layers and Figures 47 and 48 demonstrate the vertical strain values on the subbase and 
subgrade layers, respectively. 

Figure 43. Static loading and axle configuration for tridem axle. 

Figure 44. Vertical strain (LE22) on SFHMA1/2’ for tridem axle. 

Figure 45. Vertical strain at the SFHMA1’ layer surface for tridem axle. 

62 



 

 
            

 
           

 
           

Figure 46. Vertical strain at the RBL layer surface for tridem axle. 

Figure 47. Vertical strain (LE22) at Subbase surface for tridem axle. 

Figure 48. Vertical strain (LE22) at subgrade surface for tridem axle. 
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Figure 49. Maximum vertical strain at mid-depth of PFC, SMA, SFHMA1/2’, SFHMA1', and RBL. 

As shown in Figure 49, the maximum vertical strain at mid-depth of the AC layers descends for 
layers located at larger depth. This can be explained by fact that with increase in depth, the force 
magnitude is distributed over a larger area and the induced stress magnitude would be decreased. 

Figure 50 illustrates the relative permanent deformation damage based on the normal distribution 
(respecting to the distance from center of highest strain). As it can be seen, the relative damage for 
the left peak is higher since the it has higher frequency with regards to the normal distribution. 
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Figure 50. The relative permanent deformation damage based on the normal distribution wandering for a tandem axle. 
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Table 15 demonstrates the calculated ranges of permanent deformation damage-ratio for the AC 
layers. On average, fixed-path wandering can increase the permanent deformation damage up to 
2.47 times. Moreover, results show a decreasing range for the layers located at lower positions in 
the pavement structure. This increase can be explained by the flatter shape of strain distribution 
shown in Figure 49. As the difference between the maximum vertical strain and adjacent points 
decreases (flatter bell-shape), the effect of wandering would be reduced. 

Table 15. Permanent deformation damage-ratio range for AC layers. 

Permanent Deformation 
Damage Ratio for layers 

PFC SMA 
SFHMA 

1' 
SFHMA 

1/2' 
RBL 

Normal Distribution/Fixed Path 
Platooning 

2.6-2.9 2.50-2.75 2.35-2.4 1.80-2.25 1.2-1.9 

Based on the permanent deformation results, on average, the resulting rutting depth can be 
increased by a factor of 2.47 and can significantly decrease the pavement service life. Using the 
MEPDG equation for permanent deformation, Table 16 shows the anticipated service life 
assuming that the permanent deformation damage is the critical design criterion for this pavement 
section. By changing the design service life (years), the number of allowed load axles is adjusted 
to compensate for the increased number of maximum-strain loadings. Hence, the fixed-path 
platooning design life is defined as the year that permanent deformation depth for fixed-path is 
equal to permanent deformation depth for the normal distribution wandering over 20 years. Hence, 
Ratio of number of axle to reach the same failure criteria (PDFixed-path/PDnormal-distribution, 
20-year) can be compared to assess the effect of wandering on pavement performance. As 
demonstrated in Table 16, fixed-path truck platooning can significantly accelerate the permanent 
deformation damage; on average, for the fixed-path platooning, the number of axles is reduced to 
41% and pavement damage can reach to “PDnormal-distribution, 20-year” only during 4.6 years. 

Table 16. Anticipated service life for fixed-path truck platooning. 

Pavement Age PDFixed-path/PDnormal-distribution, 20-year 

4.5 0.9914 
4.55 0.9973 
4.6 1.0031 

5.4. Economic Study 

5.4.1. Economic Analysis of Operational, Environmental, and Safety impacts 
A literature review was conducted to figure out the methods to convert the impacts of truck 
platooning and its performance indicators into monetary values. A report describing the road user 
costs, published by FHWA, provided very useful and direct measures of cost (90). The 
methodology to estimate the cost of the performance indicators are described below: 

Operation (Network delay): The network delay cost was calculated by multiplying the daily 
vehicle hours delay of the study area during the study period with occupancy and value of person 
travel time. The formula is presented in the 2019 urban mobility report (91). 

𝐴𝑃𝑉𝐷 = 𝐷𝑃𝑉𝐷 𝑥 𝑉𝑃𝑇 𝑥 𝑂 𝑥 𝐴𝐹 [26] 

65 



 

 

       

        

      

     

    

        

 

       

        

        

    

               
               

               

    

             

    

                
  

         

 

       

     

      

     

    

         

 

       

where: 

APVD = Annual Passenger Vehicle Delay Cost; 

DPVD = Daily Passenger Vehicle Hours of Delay; 

VPT = Value of Person Time; 

O = Vehicle Occupancy; and 

AF = Annual Factor. 

𝐴𝐶𝑉𝐷 = 𝐷𝐶𝑉𝐷 𝑥 𝑉𝐶𝑇 𝑥 𝐴𝐹 [27] 

where: 

ACVD = Annual Commercial Vehicle Delay Cost; 

DCVD = Daily Commercial Vehicle Hours of Delay; 

VCT = Value of Commercial Vehicle Time; and 

AF = Annual Factor. 

According to the 2019 urban mobility report, the occupancy is 1.50 persons/vehicle, the value of 
person time is $18.12/hour, and the value of commercial vehicle is $54.94/hour (91). 

So, the annual delay cost for our study will be (from Equation 26 and 27): 

= APVD + ACVD 

= TND * [(18.12*1.5*0.96) + (54.94*0.04)] * 24 * 52 * 7 

= 247,152 * TND 

Fuel: The formula for estimating Fuel estimate cost is provided in the 2019 urban mobility report 
(91). 

𝐴𝑃𝑉𝐹 = 𝐷𝐹𝐶 𝑥 𝑃𝑃𝑉 𝑥 𝐺 𝑥 𝐴𝐹 [28] 

where: 

APVD = Annual Passenger Vehicle Fuel Cost; 

DFC = Daily Fuel Consumption; 

PPV = Percentage of Passenger Vehicle; 

G = Gasoline Cost; and 

AF = Annual Factor. 

𝐴𝐶𝑉𝐹 = 𝐷𝐹𝐶 𝑥 𝑃𝐶𝑉 𝑥 𝐷 𝑥 𝐴𝐹 [29] 

where: 

ACVD = Annual Commercial Vehicle Fuel Cost; 
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DFC = Daily Fuel Consumption; 

PCV = Percentage of Commercial Vehicle; 

D = Diesel Cost; and 

AF = Annual Factor. 

From, U.S. Energy Information Administration, the avg. gasoline and diesel cost for 2019 was 
$2.691 and $3.056 respectively (92,93). 

So, the annual fuel cost for our study will be (from Equation 28 and 29): 

= Fuel consumption * [(2.691 * 0.96) + (3.056 * 0.04)] * 24 * 52 * 7 

= 23,640 * Fuel consumption 

Emission: The FHWA report provided a table to get the transportation emission cost per ton in 
2010 dollars for different pollutants (90). According to table 32, per tonnage cost of CO₂ is $37, 
NOₓ is $16300, and PM₁₀ is $131800. 

The price deflator is calculated using implicit price deflators for 2019 and 2010 (94). 

Price deflator = Implicit price deflators for 2019 vs 2010 = 112.032 / 96.068 = 1.166 

So, the emission cost for our study will be: 

= (CO₂ * 37 + NOₓ * 16,300 + PM₁₀ *131,800) * 1.166 * 24 * 52 * 7 

= 376,889 * CO₂ + 166,034,669 * NOₓ + 1,342,537,997 * PM₁₀, (emission unit: ton) 

= 0.41545 * CO₂ + 183.022 * NOₓ + 1479.8944 * PM₁₀, (emission unit: grams) 

Safety: According to the FHWA report, one can estimate the cost of crashes if the crash rate is 
known (90). Tarko showed in his book that there exists a crash-conflict relationship (95). The 
crash-conflict relationship may be defined as: 

Qc = Π * Qn [30] 

where: 

Qc = Number of crashes; 

Qn = Number of observed traffic conflicts; and 

Π = Crash-conflict ratio. 

Many researchers provided the crash-conflict ratio to be used in Equation 30 (96-98). So, if the 
observed conflict is known, one can convert the conflict to crashes using the above equation. In 
this study, we used the crash-conflict ration for unsignalized intersection mentioned in Table 5.2 
of Hyden (97). 

For our study, we used Time-integrated Time to Collision as a performance indicator. Mahmud et 
al. mentioned TIT in their paper as a relative probability of conflict, as it integrates the time to 
collision profile of drivers (99). So, we used TIT indicator as an alternate of observed conflict. So 
using the TIT indicator, we can estimate the number of crash events for our study. But we still do 
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not know the severity of the crashes. We investigated the historic crash data from 2014 to 2018 to 
get the relative percentage of fatal, injury, and PDO crashes. We used this percentage to convert 
the three crash cost into a single crash cost. 

Table 17. Estimation of crash cost per event by severity. 

Severity 

Fatalities 

Injuries 

AdjustedCPI 
[CPI(2019)/CPI(2001)] 

255.657/177.1 = 1.4436 

1.4436 

AdjustedECI 
[ECI(2019)/ECI(2001)] 

137.475/85.95 = 1.6 

1.6 

Cost/event (2019 dollars) 

(1,277,640 * 1.4436) + (4,106,620 
– 1,277,640) * 1.6 = 6,370,769 

(52,569 * 1.4436) + (98,752 – 
52,569) * 1.6 = 149,781 

PDO 1.4436 1.6 (6497 * 1.4436) + (7,800 – 6497) * 
1.6 = 11,464 

We need to adjust the crash cost to 2019 dollars using CPI and ECI values (100,101). We estimated 
the crash cost per event using the following formula (90): 

AC = HC * CPI (2019)/ CPI (2001) + (CC – HC) * ECI (2019) / ECI (2001) [31] 

where: 

AC = Adjusted cost; 

CPI = Consumer Price Index; 

ECI = Employment Cost Index; 

HC = Human capital cost; and 

CC = Comprehensive cost. 

We got the human capital cost and comprehensive cost in 2001 dollars from the FHWA report 
(90). The calculation is shown in Table 17. 

Now we can estimate the unit crash cost per event by multiplying cost/event with the associated 
severity percentage that we got from crash data (Table 18). 

Table 18. The relative percentage of crash severities. 

Severity Frequency Percent 
Fatalities 42 0.42 
Injuries 2699 26.86 
PDO 7307 72.72 
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Unit crash cost/event = Severity crash cost * relative percentage 

= (0.42 * 6,370,769 + 26.86 * 149,781 + 72.72 * 11,464) / 100 

= 75,325 

So, the safety cost for our study will be: 

= Crash events * Cost per event 

= TIT * (Π * 24 * 52 * 7) * 75,325 

= (37Е -06 * 8736) * 75,325 * TIT 

= 24,347 * TIT 

Economic analysis results: The estimated costs were used to calculate the total cost of truck 
platooning impacts (e.g., safety, environmental and operational impacts) on highways for all the 
scenarios developed at the corridor level analysis. 

First, Table 19 illustrates the total costs of truck platooning impacts for peak scenarios at corridor 
level analysis (e.g., impacts on pavement is not included). As shown in Table 19 that the total cost 
varies between 391 million and 1134 million USD. Note the cost of the reference scenario (e.g., 
no truck platooning) is about $620 million. It was found that the worst-case occurred in the extreme 
scenario with 100% market penetration rate. The best recommended scenario during peak hours 
(total cost was $391 million) is a combination of a platoon size of 2 trucks, market penetration 
ratio (MPR) of 50%, and an intra-platoon distance of 0.7 s. By applying this scenario during peak 
hours, the total cost can be reduced from $619.88 million to $391.34 million (about 58% decrease). 
It is worth mentioning that the safety cost plays an important role in this optimum scenario. Figure 
51 also shows the total cost comparison of the peak hour scenarios. 

Table 19. Total cost of truck platooning impacts for peak scenarios at corridor level analysis. 

Time 
period 

MPR Platoon 
size 

Intra platoon 
distance 

Network 
Delay Cost 

Fuel 
Cost 

Emission 
Cost 

Safety 
Cost 

Total 
Cost 

reference 0 0 0 492.35 93.67 26.98 6.87 619.88 
peak 25 2 0.3 848.35 94.37 27.18 12.14 982.04 
peak 50 2 0.3 487.58 93.45 26.92 6.57 614.52 
peak 100 2 0.3 577.27 93.42 26.91 9.09 706.68 
peak 25 3 0.3 645.86 94.13 27.11 8.36 775.46 
peak 50 3 0.3 488.35 93.82 27.02 6.47 615.66 
peak 100 3 0.3 998.3 94.9 27.34 13.46 1134 
peak 25 2 0.5 478.19 92.63 26.68 6.98 604.49 
peak 50 2 0.5 578.09 92.74 26.71 8.46 706.01 
peak 25 3 0.5 453.77 93.62 26.97 6.26 580.62 
peak 50 3 0.5 628.61 92.57 26.67 9.54 757.39 
peak 25 2 0.7 538.05 92.09 26.53 7.63 664.3 
peak 50 2 0.7 270.51 91.15 26.26 3.43 391.34 
peak 25 3 0.7 573.47 92.14 26.54 6.99 699.14 
peak 50 3 0.7 731.72 91.62 26.39 9.57 859.3 
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Figure 51. Cost comparison of peak scenarios (corridor level analysis). 

Second, Table 20 illustrates the total costs of truck platooning impacts for off-peak scenarios at 
corridor level analysis (e.g., impacts on pavement is not included). As shown in Table 20, the total 
cost varies between 293 million and 447 million USD. The best recommend scenario during off-
peak hours, with a total cost of 293 million, is a combination of a platoon size of 4 rucks, market 
penetration ratio (MPR) of 25%, and an intra-platoon distance of 0.5 s. The second-best scenario, 
with a total cost of 300 million, is a combination of a platoon size of 4, an mpr of 50, and an intra-
platoon distance of 0.3 s. 

In Figure 52, the total cost comparison of the off-peak hour is shown. It can be observed that most 
of the scenarios are better than the reference scenarios for the off-peak hour. So, truck platooning 
can improve traffic safety, traffic operation, reduce vehicular emissions and fuel consumptions 
during off-peak hours. To have positive impacts from truck platooning during peak hours, it is 
recommended to minimize the size of truck platoon to two vehicles. 
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Table 20. Total cost of truck platooning impacts for off-peak scenarios at corridor level analysis. 

Time period MPR Platoon 
size 

Intra 
platoon 
distance 

Network 
Delay 
Cost 

Fuel 
Cost 

Emission 
Cost 

Safety 
Cost 

Total 
Cost 

reference 0 0 0 311.86 76.66 22.08 4.38 414.97 

Off-peak 25 4 0.3 343.66 77.12 22.21 4.12 447.12 

Off-peak 50 4 0.3 254.71 75.95 21.88 2.98 355.52 

Off-peak 100 4 0.3 260.3 76.48 22.03 3.39 362.21 

Off-peak 25 5 0.3 199.55 75.95 21.88 2.41 299.79 

Off-peak 50 5 0.3 269.37 77.53 22.33 2.83 372.07 

Off-peak 100 5 0.3 338.6 77.11 22.21 4.62 442.54 

Off-peak 25 4 0.7 236.67 77.12 22.22 2.69 338.7 

Off-peak 50 4 0.7 247.2 73.92 21.29 3.12 345.54 

Off-peak 25 5 0.7 274.22 73.58 21.2 4.03 373.03 

Off-peak 50 5 0.7 285.09 76.11 21.92 3.69 386.81 

Off-peak 50 3 0.7 193.67 75.44 21.73 2.6 293.44 

Off-peak 25 3 0.7 262.03 74.77 21.54 3.31 361.65 

Off-peak 50 5 0.5 288.23 76.97 22.17 3.95 391.33 

Off-peak 25 4 0.5 262.77 76.82 22.13 3.33 365.05 

Off-peak 50 4 0.5 213.44 74.88 21.57 2.81 312.7 

Off-peak 25 5 0.5 263.32 75.61 21.78 3.29 363.99 

Off-peak 50 3 0.5 288.8 76.03 21.9 4.29 391.01 

Off-peak 25 3 0.5 244.8 74.97 21.6 3.11 344.48 

Off-peak 50 3 0.3 277.33 76.84 22.13 3.51 379.81 

Off-peak 25 3 0.3 316.97 76.1 21.92 4.42 419.41 
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Figure 52. Cost comparison of off-peak scenarios. 
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5.4.2. Economic Analysis of pavement damage due to wandering 
Based on a study by Lee et al., the perpetual pavement (PP) economic analysis is compared against 
traditional pavements that are constructed in Texas (102). They implemented the FPS 21 and 
TxME software to design the PP located in 10 different districts. PPs are defined as a full-depth 
AC layers designed for a service of at least 50 years, which are not expected to experience notable 
full-depth rutting or bottom-up cracking. This concept is based on limiting the vertical and 
horizontal strain value on subgrade and at bottom of AC layer, respectively. However, the 
AASHTOWare design (as the MEPDG design software) is based on the predicted pavement 
distresses in future. 

Two approaches are considered to analyze the effects of tire wandering pattern on the pavement: 
strain-value-based (TxME) and distress-based (MEPDG) (86). In the strain-value based approach 
it is assumed that the pavement does not require any major maintenance or reconstruction and only 
a 2”AC overlay is constructed on the existing pavement every 12 years to improve ride quality, 
surface friction, or top-down cracking resistance (102). The distress approach depends on the 
critical type of pavement distress. 

Figure 53. Maintenance strategies for the normal wandering (top) and fixed-path wandering (bottom). 

In order to conduct the strain-value-based economic analysis, 2 cases are considered: the normal 
wandering and fixed-path wandering. For the normal wandering, it is assumed that a 2”AC overlay 
is constructed on the existing pavement every 12 years to improve ride quality and surface friction. 
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For fixed-path wandering, due to the limited lateral movement of tires it is assumed that polishing 
occurs faster and the interval for overlay would be shorter. The 5.7-years reduced time for overlay 
interval is determined with respect to number of passing axles (Figure 53). 

In the distress-based approach and based on the results previously obtained in permanent 
deformation and fatigue analysis, distress-based for fatigue and distress-based for rutting are 
considered for cases that the fatigue and permanent deformation (rutting) are the critical distress, 
respectively (Figure 54). 

Table 21 demonstrates the “present” cost for strain-value-based (TxME) and distress-based 
(MEPDG) approaches for a 50-year life cycle costs for the PP sections located in San Antonio. 
The provided costs include initial cost, recurring maintenance, and reconstruction. The strain-
value-based approach with normal wandering shows the benchmark cost that is already considered 
for PP maintenance strategy. Based on the results of the fixed-path wandering on the studied 
pavement section (provided in previous sections), the present cost for strain-value-based (fixed-
path wandering), distress-based for fatigue, and distress-based for rutting are $3,375,000, 
$3,997,000, and $3,076,000 per mile, respectively. These values for the 1.3 miles section 
(constructed in 2006) are $3,245,000, $3,764,000, and $2,897,000 per mile, respectively. On 
average, the calculated costs for the strain-value-based (fixed-path wandering), distress-based for 
fatigue, and distress-based for rutting values show an increase of 25%, 46%, and 13%. 

Figure 54. Reconstruction strategy based on pavement condition for A) Fatigue distress and B) Permanent deformation. 
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Table 21. Present cost for strain-value-based and distress-based approaches per mile over a 50-year life cycle costs. 

PP 
Section 

IH-35 San 
Antonio 
(2005) 

Length 

1.74 

Strain-Value 
based (TxME) – 

Normal 
Wandering 

$2,717,000 

Strain-Value 
based 

(TxME) – 
Fixed Path 

$3,375,000 

Distress based 
(MEPDG) -

Fatigue Damage 

$3,997,000 

Distress 
based 

(MEPDG) -
Rutting 

$3,076,000 

IH-35 San 
Antonio 
(2006) 

1.30 $2,587,000 $3,245,000 $3,764,000 $2,897,000 
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6. CONCLUSIONS 

Truck platooning is one of the most important applications of connected and autonomous vehicle 
technology. Truck platooning has great potential in addressing current challenges facing freight 
movements like reducing highway traffic congestions, energy savings, and increasing safety. This 
study investigated the impacts of truck platooning in the South-central region of the US. Both 
corridor and network-level simulation analyses were conducted to estimate the operational, 
environmental, and safety impact of truck platooning on highways. Finite element modeling was 
performed also to model the impact of truck platooning on highways pavement. An economic 
feasibility analysis was conducted then to quantify the impacts of truck platooning in monetary 
terms. 

The corridor-level analysis result showed that the truck platooning deteriorates traffic operation, 
and safety during peak-hours period. A high TND and TIT value was observed in different 
scenarios. Therefore, it is recommended to minimize the size of platoon to two trucks only during 
peak hours considering the results of the economic analysis. 

On the other hand, truck platooning performed very well in the off-peak hour period where most 
of the scenarios were observed to improve traffic operation, environment, and safety. The scenario 
presented the highest safety and second-highest operational improvement was comprised of a 
platoon size of 5, an mpr of 25%, and an intra-platoon distance of 0.3 s. The second-best scenario 
that showed the highest traffic operational improvement and second-highest safety improvement 
was comprised of a platoon size of 3, an mpr of 50%, and an intra-platoon distance of 0.7 s. It can 
be seen that if the mpr value is increased, the platoon size can be reduced to maintain the same 
operational and safety impacts of truck platooning. 

The economic feasibility analysis was done for all the performance indicators to convert them into 
monetary value. The total cost for each scenario was estimated by summing up all the costs of 
performance indicators. From the results of the economic study, it was observed that in peak-hours, 
most of the scenarios performed poorly with high total cost compared to the reference scenario 
(human-driven trucks). On the contrary, in the off-peak hour, most of the scenarios showed 
improved performance with a lower total cost than the reference scenario. The two scenarios that 
cost the lower, consists of a platoon size of 4 trucks. So, in the off-peak hour, a platoon size of 4 
may be suitable, as all the scenarios including a platoon size of 4 showed lower total cost than the 
reference. 

In addition to the microscopic analysis, a large-scale analysis of the impacts of truck platooning 
on congestion and traffic flow dynamics is conducted. Accordingly, a simulation model of I-35 is 
developed. The model was calibrated based on the trajectory data collected from a segment of I-
35 near Austin, TX. The data contained the trajectory of multiple 3-vehicle platoons to better 
capture the impacts of platooning on traffic flow dynamics. The impacts of various market 
penetration rates of truck platooning as well as the size of the platoon on traffic flow dynamics 
were explored. The findings show that as the size of platoon decreases, the scatter in fundamental 
diagram decreases and the traffic flow becomes more stable. Moreover, with a fixed platoon size, 
higher penetration rate of autonomous trucks results in smoother traffic and less scatter in 
fundamental diagram. 

The impact of truck platooning on pavement are addressed using the elastic and dynamic-
viscoelastic finite element method (FEM) models. The mechanical response obtained from the 
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simulations are implemented to predict the effects of platooning due to limited wandering (lateral 
movement of truck tires). Based on the calculated mechanical response values (strain) in AC layer 
and the economic analysis, the followings can be concluded: 

- FEM models show promising capability of simulating AC layer responses under different 
types of loads. The implemented viscoelastic model was able to simulate the field 
performance of pavement within acceptable accuracy. 

- Based on the results, it can be concluded that wandering can have influential effect on the 
fatigue life and permanent deformation damage, which failure to take account of it can 
impose significant maintenance costs on national and state road network. 

- Fatigue life can be decreased in a range of 14% to 35%, in terms of numbers of cycles over 
20-year design life (FDFixed-path/FDnormal-distribution, 20-year). 

- The ratio of number of axle to reach the same permanent deformation failure criteria 
(PDFixed-path/PDnormal-distribution, 20-year) are determined for all AC layers. 
Compared to normal distribution, for zero-wandering scenario, pavement design life can 
be decreased from 20 years to 4.6 years. 

- Based on the economic analysis of pavement damage, a range of 13% to 46% increase in 
present construction-maintenance cost can be anticipated when fixed-path wandering is 
implemented in the truck platooning. 
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